CSE 323: Operating System Design

Condition Variable & Semaphore

Salman Shamil

North South University (NSU) Fall 2025

Original slides by Mathias Payer and Sanidhya Kashyap [EPFL]

Salman Shamil # CSE 323: Operating System Design

1/28

Condition Variables (CV)

In concurrent programming, a common scenario is one thread waiting for another thread to complete an action.

```
1 bool done = false;
3 /* called in the child to signal termination */
4 void thr exit() {
    done = true;
7 /* called in the parent to wait for a child thread */
8 void thr_join() {
     while (!done):
10 }
```

Lecture Topics

- Condition Variables
- Producer-Consumer Problem
- Semaphores
- Signaling through condition Variables and Semaphores
- Concurrency Bugs

This slide deck covers chapters 30 and 31 in OSTEP.

Condition Variables (CV)

- Locks enable mutual exclusion of a shared region.
 - Unfortunately they are oblivious to ordering
- Waiting and signaling (i.e., T2 waits until T1 completes a given task) could be implemented by spinning until the value changes
- But spinning is incredibly *inefficient*
- New synchronization primitive: condition variables

4 / 28

Condition Variables (CV)

- A CV allows:
 - A thread to wait for a condition
 - Another thread signals the waiting thread
- Implement CV using queues
- API: wait, signal or broadcast
 - wait: wait until a condition is satisfied
 - signal: wake up one waiting thread
 - broadcast: wake up all waiting threads
- On Linux, pthreads provides CV implementation

Salman Shamil # CSE 323: Operating System Design

Signal parent that child has exited (2)

- pthread_cond_wait(pthread_cond_t *c, pthread mutex t *m)
 - Assume mutex m is held; atomically unlock mutex when waiting, retake it when waking up
- Question: Why do we need to check a condition before sleeping?
- Thread may have already exited, i.e., no need to wait
 - Principle: Check the condition before sleeping
- Question: Why can't we use if when waiting?
- There can be multiple threads to wait on the same CV. Race Condition!
 - Principle: while instead of if when waiting (more on this later...)

Signal parent that child has exited

```
1 bool done = false:
2 pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
3 pthread_cond_t c = PTHREAD_COND_INITIALIZER;
  /* called in the child to signal termination */
5 void thr exit() {
    pthread_mutex_lock(&m);
    done = true;
    pthread_cond_signal(&c);
    pthread mutex unlock(&m);
10 }
11 /* called in the parent to wait for a child thread */
12 void thr_join() {
13 pthread_mutex_lock(&m);
14 while (!done)
     pthread cond wait(&c, &m);
16 pthread_mutex_unlock(&m);
17 }
```

Signal parent that child has exited (3)

• Question: Why do we need to proctect done with mutex m?

Salman Shamil # CSE 323: Operating System Design

- Mutex m allows one thread to access done for protecting against missed updates
 - Parent reads done == false but is interrupted
 - Child sets done = true and signals but no one is waiting
 - Parent continues and goes to sleep (forever)
- Lock is therefore required for wait/signal synchronization

Producer/Consumer Problem

Figure 1: Producer-Consumer/Bounded Buffer Problem

- Producer/consumer is a common programming pattern
- For example: map (producers) / reduce (consumer)
- For example: a concurrent database (consumers) handling parallel requests from clients (producers)
 - Clients produce new requests (encoded in a queue)
 - Handlers consume these requests (popping from the queue)

Salman Shamil # CSE 323: Operating System Design

Solving Producer/Consumer Problem

- Setup:
 - Buffer holds a single item
 - One producer and one consumer

```
int buffer;
                                        void *producer(void *arg) {
int count = 0; // initially empty
                                          int loops = (int) arg;
void put(int value) {
                                          for (i = 0; i < loops; i++) {</pre>
    assert(count == 0);
                                            put(i);
    count = 1:
    buffer = value;
                                        void *consumer(void *arg) {
int get() {
                                          while (1) {
    assert(count == 1);
                                            int tmp = get();
    count = 0:
                                            printf("%d\n", tmp);
    return buffer;
}
```

- Problems with this solution
 - Critical sections in put() and get(). Use locks...
- Producer-Consumer dependency for fetching. Needs CV!

Salman Shamil # CSE 323: Operating System Design

Producer/Consumer with Bounded Buffer

- One or more producers create items, store them in buffer
- One or more consumers process items from buffer
- Need synchronization for buffer
 - Want concurrent production and consumption
 - Use as many cores as available
 - Minimize access time to shared data structure
- Strategy: use CV to synchronize
 - Make producers wait if buffer is full
 - Make consumers wait if buffer is empty (nothing to consume)

Salman Shamil # CSE 323: Operating System Design

10 / 28

Solving Producer/Consumer Problem

```
cond_t cond;
                                      void *consumer(void *arg) {
mutex_t mutex;
                                        int i;
                                        int loops = (int) arg;
void *producer(void *arg) {
                                        for (i = 0; i < loops; i++) {
 int i;
                                          Pthread_mutex_lock(&mutex);
 int loops = (int) arg;
                                          if (count == 0)
 for (i = 0; i < loops; i++) {
                                            Pthread_cond_wait(&cond, &mutex);
    Pthread_mutex_lock(&mutex);
                                          int tmp = get();
    if (count == 1)
                                          Pthread_cond_signal(&cond);
     Pthread cond wait(&cond, &mutex);
                                          Pthread mutex unlock(&mutex);
    put(i);
                                          printf("%d\n", tmp);
    Pthread_cond_signal(&cond);
    Pthread_mutex_unlock(&mutex);
```

Does it work?

- Fine for single producer and single consumer.
- Change the setup to accommodate multiple producers and/or multiple consumers. How about now?

Solving Producer/Consumer Problem (2)

- Setup:
 - Buffer holds a single item
 - Multiple producers and/or multiple consumers
- Previous code doesn't work.

No recheck after waking up.

- Consider a consumer thread (C1) is waiting for an item
- What if a second consumer thread (C2) sneaks in just after an item is produced? ... skipping the wait() call.
- Producer's signal() wakes C1 up, but C2 already fetched the item!
- Solution: Use while instead of if to recheck upon waking up.

Producers and consumers both waiting on the same CV.

- Two consumers C1 and C2 runs and sleeps by calling wait().
- Producer runs and signal() wakes up C1 (or C2).
- After consuming the item C1 can wake up producer again.
- But what if C1's signal() wakes up C2 instead?
- Solution: Use separate conditions for directed signaling.

Salman Shamil # CSE 323: Operating System Design

13 / 28

Producer/Consumer Buffer with Multiple Slots

```
void *producer(void *arg) {
int buffer[MAX];
int fill_ptr = 0;
                                       int i;
int use_ptr = 0;
                                       for (i = 0; i < loops; i++) {
int count = 0;
                                         Pthread_mutex_lock(&mutex);
                                         while (count == MAX)
void put(int value) {
                                           Pthread_cond_wait(&empty, &mutex);
 buffer[fill_ptr] = value;
                                         put(i);
 fill_ptr = (fill_ptr + 1) % MAX;
                                         Pthread_cond_signal(&fill);
                                         Pthread_mutex_unlock(&mutex);
  count++;
int get() {
 int tmp = buffer[use_ptr];
                                     void *consumer(void *arg) {
 use_ptr = (use_ptr + 1) % MAX;
 count--;
                                       for (i = 0; i < loops; i++) {
 return tmp;
                                         Pthread mutex lock(&mutex):
                                         while (count == 0)
                                           Pthread cond wait(&fill. &mutex):
                                         int tmp = get();
cond_t empty, fill;
                                         Pthread_cond_signal(&empty);
                                         Pthread_mutex_unlock(&mutex);
mutex_t mutex;
                                         printf("%d\n", tmp);
                   Salman Shamil # CSE 323: Operating System Design
```

Solving Producer/Consumer Problem (2)

```
cond_t empty, full;
                                      void *consumer(void *arg) {
mutex_t mutex;
                                        int loops = (int) arg;
void *producer(void *arg) {
                                        for (i = 0; i < loops; i++) {
  int i;
                                          Pthread mutex lock(&mutex):
  int loops = (int) arg;
                                          while (count == 0)
  for (i = 0; i < loops; i++) {
                                            Pthread_cond_wait(&full, &mutex);
    Pthread mutex lock(&mutex);
                                          int tmp = get();
    while (count == 1)
                                          Pthread_cond_signal(&empty);
     Pthread_cond_wait(&empty, &mutex); Pthread_mutex_unlock(&mutex);
    put(i):
                                          printf("%d\n", tmp);
    Pthread_cond_signal(&full);
    Pthread_mutex_unlock(&mutex);
                  Salman Shamil #  CSE 323: Operating System Design
                                                                    14 / 28
```

Semaphore

- A semaphore extends a CV with an integer as internal state
- int sem_init(sem_t *sem, unsigned int value): creates a new semaphore with value slots
- int sem wait(sem t *sem): waits until the semaphore has at least one slot, decrements the number of slots
- int sem_post(sem_t *sem): increments the semaphore (and wakes one waiting thread)
- int sem_destroy(sem_t *sem): destroys the semaphore and releases any waiting threads

Producer/Consumer: Use Semaphores!

```
sem t csem, psem;
/* BUFSIZE items are available for producer to create */
sem_init(&psem, 0, BUFSIZE);
/* 0 items are available for consumer */
sem_init(&csem, 0, 0);
```

Salman Shamil # CSE 323: Operating System Design

Consumer: Semaphores

```
unsigned int get() {
   /* wait until data is produced */
   sem_wait(&csem);
4
   /* consumer entry */
   unsigned long val = buffer[cpos];
    cpos = (cpos + 1) % BUFSIZE;
8
    /* notify producer that a space has freed up */
10 sem_post(&psem);
11 return val;
12 }
```

Producer: Semaphores

```
1 void put(unsigned int val) {
   /* we wait until there is buffer space available */
    sem_wait(&psem);
  /* store element in buffer */
6 buffer[ppos] = val;
   ppos = (ppos + 1) % BUFSIZE;
    /* notify consumer that data is available */
   sem post(&csem);
11 }
```

Salman Shamil # CSE 323: Operating System Design

Producer/Consumer: Remaining Issues?

- We now synchronize between consumers and producers
 - Producer waits until buffer space is available
 - Consumer waits until data is ready
- How would you handle multiple producers/consumers?
 - Currently no synchronization between producers (or consumers)

Multiple Producers: Use Locking!

```
/* mutex handling mutual exclusive access to ppos */
1 pthread_mutex_t pmutex = PTHREAD_MUTEX_INITIALIZER;
  void put(unsigned int val) {
   unsigned int mypos;
  /* we wait until there is buffer space available */
6 sem_wait(&psem);
   /* ppos is shared between all producers */
8 pthread_mutex_lock(&pmutex);
   mypos = ppos;
10 ppos = (ppos + 1) % BUFSIZE;
11 /* store information in buffer */
12 buffer[mypos] = val;
13 pthread_mutex_unlock(&pmutex);
14 sem_post(&csem);
15 }
            Salman Shamil # CSE 323: Operating System Design
```

Implementing a Mutex with a Semaphore

```
1 sem_t sem;
2 sem_init(&sem, 1);
4 sem_wait(&sem);
5 ... // critical section
6 sem_post(&sem);
```

Semaphores/Spin Locks/CVs are interchangeable

- Each is implementable through a combination of the others
- Depending on the use-case one is faster than the other
 - How often is the critical section executed?
 - How many threads compete for a critical section?
 - How long is the lock taken?

Salman Shamil # CSE 323: Operating System Design

22 / 28

Implementing a Semaphore with CV/Locks

```
1 typedef struct {
2 int value:
                         // sem value
3 pthread_mutex_t lock; // access to sem
   pthread_cond_t cond; // wait queue
5 } sem t;
7 void sem_init(sem_t *s, int val) {
8 	 s->value = val:
9 pthread_mutex_init(&(s->lock), NULL);
10 pthread cond init(&(s->cond), NULL);
11 }
```

Implementing a Semaphore with CV/Locks

```
void sem_wait(sem_t *s) {
      pthread_mutex_lock(&(s->lock));
2
      while (s->value <= 0)
3
          pthread_cond_wait(&(s->cond), &(s->lock));
4
5
      s->value--;
      pthread mutex unlock(&(s->lock));
7
8
    void sem_post(sem_t *s) {
9
      pthread_mutex_lock(&(s->lock));
10
11
      s->value++;
12
      pthread cond signal(&(s->cond));
13
      pthread mutex unlock(&(s->lock));
14 }
             Salman Shamil # CSE 323: Operating System Design
```

Reader/Writer Locks

```
1 void rwlock_acquire_readlock(rwlock_t *rw) {
    sem wait(&rw->lock);
   rw->readers++;
    if (rw->readers == 1)
5
       sem_wait(&rw->wlock); // first r, also grab wlock
    sem post(&rw->lock);
7 }
8
   void rwlock_release_readlock(rwlock_t *rw) {
    sem_wait(&rw->lock);
    rw->readers--;
13 if (rw->readers == 0)
      sem_post(&rw->wlock); // last r, also release wlock
    sem_post(&rw->lock);
15
16 }
  • Full Code in Textbook (Page 12)
             Salman Shamil #  CSE 323: Operating System Design
```

Reader/Writer Locks

- A single (exclusive) writer, multiple (N) concurrent readers
- Implement using two semaphores: lock for the data structure, wlock for the writer
 - Both semaphores initialized with (1)
 - Writer only waits/posts on wlock when acquiring/releasing
 - Reader waits on lock, increments/decrements reader count
 - If number of readers==0, must wait/post on wlock

Salman Shamil # CSE 323: Operating System Design

26 / 28

Summary

- Spin lock, CV, and semaphore synchronize multiple threads
 - Spin lock: atomic access, no ordering, spinning
 - Condition variable: atomic access, queue, OS primitive
 - Semaphore: shared access to critical section with (int) state
- All three primitives are equally powerful
 - Each primitive can be used to implement both other primitives
 - Performance may differ!