CSE 323: Operating System Design
Condition Variable & Semaphore

Lecture Topics

Salman Shamil

S=mO

North South University (NSU)

Fall 2025

Original slides by Mathias Payer and Sanidhya Kashyap [EPFL]

Salman Shamil &} = @ ©) CSE 323: Operating System Design 1/28

Condition Variables

Producer-Consumer Problem

Semaphores

Signaling through condition Variables and Semaphores
Concurrency Bugs

This slide deck covers chapters 30 and 31 in OSTEP.

Salman Shamil &} = [©) CSE 323: Operating System Design 2/28

Condition Variables (CV)

In concurrent programming, a common scenario is one thread
waiting for another thread to complete an action.

bool done = false;

1

2

3 /* called in the child to signal termination */
4 void thr_exit() {
5 done = true;
6

7 /% called in the parent to wait for a child thread */
8 wvoid thr_join() {

9 while (!done);

10 }

Salman Shamil & = [©) CSE 323: Operating System Design 3/28

Condition Variables (CV)

@ Locks enable mutual exclusion of a shared region.
e Unfortunately they are oblivious to ordering

e Waiting and signaling (i.e., T2 waits until T1 completes a given
task) could be implemented by spinning until the value changes

@ But spinning is incredibly inefficient
@ New synchronization primitive: condition variables

Salman Shamil &} = [©) CSE 323: Operating System Design 4/28

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://github.com/HexHive/OSTEP-slides
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Condition Variables (CV)

o A CV allows:
o A thread to wait for a condition
o Another thread signals the waiting thread

o Implement CV using queues

o API: wait, signal or broadcast
e wait: wait until a condition is satisfied
e signal: wake up one waiting thread
e broadcast: wake up all waiting threads

@ On Linux, pthreads provides CV implementation

Salman Shamil &} = @ ©) CSE 323: Operating System Design 5/28

Signal parent that child has exited

bool done = false;
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t ¢ = PTHREAD_COND_INITIALIZER;
/* called in the child to signal termination */
void thr_exit() {

pthread_mutex_lock(&m) ;

done = true;

pthread_cond_signal (&c);

pthread_mutex_unlock(&m) ;

¥
/* called in the parent to wait for a child thread */
void thr_join() {

pthread_mutex_lock(&m) ;

while (!done)

pthread_cond_wait (&c, &m);

pthread_mutex_unlock (&m) ;

}

© 00 NO Ok WN -

=
= O

R T e e
~N O O W N

Salman Shamil &} = [©) CSE 323: Operating System Design 6/28

Signal parent that child has exited (2)

@ pthread_cond_wait(pthread_cond_t *c,
pthread_mutex_t *m)
o Assume mutex m is held; atomically unlock mutex when waiting,
retake it when waking up

@ Question: Why do we need to check a condition before
sleeping?

@ Thread may have already exited, i.e., no need to wait
e Principle: Check the condition before sleeping

@ Question: Why can’t we use if when waiting?

@ There can be multiple threads to wait on the same CV. Race

Condition!
o Principle: while instead of if when waiting (more on this
later...)
Salman Shamil & = [©) CSE 323: Operating System Design 7/28

Signal parent that child has exited (3)

@ Question: Why do we need to proctect done with mutex m?

@ Mutex m allows one thread to access done for protecting
against missed updates
e Parent reads done == false but is interrupted
o Child sets done = true and signals but no one is waiting
e Parent continues and goes to sleep (forever)
@ Lock is therefore required for wait/signal synchronization

Salman Shamil &} = [©) CSE 323: Operating System Design 8/28

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Producer/Consumer Problem

Figure 1: Producer-Consumer/Bounded Buffer Problem

@ Producer/consumer is a common programming pattern
@ For example: map (producers) / reduce (consumer)
e For example: a concurrent database (consumers) handling

parallel requests from clients (producers)
o Clients produce new requests (encoded in a queue)
o Handlers consume these requests (popping from the queue)

Salman Shamil &} = [©) CSE 323: Operating System Design 9/28

Producer/Consumer with Bounded Buffer

@ One or more producers create items, store them in buffer
@ One or more consumers process items from buffer

@ Need synchronization for buffer
e Want concurrent production and consumption
e Use as many cores as available
e Minimize access time to shared data structure

@ Strategy: use CV to synchronize
e Make producers wait if buffer is full
e Make consumers wait if buffer is empty (nothing to consume)

Salman Shamil &} =) ©) CSE 323: Operating System Design 10/28

Solving Producer/Consumer Problem

o Setup:
e Buffer holds a single item
@ One producer and one consumer

int buffer; void *producer(void *arg) {
int count = 0; // initially empty int i;
int loops = (int) arg;
void put(int value) { for (i = 0; i < loops; i++) {
assert(count == 0); put(i);
count = 1; }
buffer = value; }
}
void *consumer(void *arg) {
int get() { while (1) {
assert(count == 1); int tmp = get();
count = 0; printf ("/d\n", tmp);
return buffer; }
} }

@ Problems with this solution
o Critical sections in put () and get(). Use locks...

@ Producer-Consumer dependency for fetching. Needs CV!

Salman Shamil &} = [©) CSE 323: Operating System Design 11/28

Solving Producer/Consumer Problem

cond_t cond; void *consumer(void *arg) {

mutex_t mutex;

void *producer (void *arg) {
int 1i;
int loops = (int) arg;
for (i = 0; i < loops; i++) {
Pthread_mutex_lock (&mutex) ;

if (count == 1)
Pthread_cond_wait (&cond, &mutex);
put(i);

Pthread_cond_signal (&cond) ;

Pthread_mutex_unlock (&mutex) ; }

Does it work?

int i;

int loops = (int) arg;

for (i = 0; i < loops; i++) {
Pthread_mutex_lock(&mutex) ;
if (count == 0)

Pthread_cond_wait (&cond, &mutex) ;
int tmp = get();
Pthread_cond_signal (&cond) ;
Pthread_mutex_unlock (&mutex) ;
printf ("%d\n", tmp);

@ Fine for single producer and single consumer.
@ Change the setup to accommodate multiple producers and/or
multiple consumers. How about now?

Salman Shamil & = @0 CSE 323: Operating System Design 12/28

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Solving Producer/Consumer Problem (2)

e Setup:

o Buffer holds a single item

e Multiple producers and/or multiple consumers
@ Previous code doesn't work.

No recheck after waking up.

@ Consider a consumer thread (C1) is waiting for an item

@ What if a second consumer thread (C2) sneaks in just after an item is
produced? ... skipping the wait () call.

@ Producer's signal() wakes C1 up, but C2 already fetched the item!

@ Solution: Use while instead of if to recheck upon waking up.
v

Producers and consumers both waiting on the same CV.

Two consumers C1 and C2 runs and sleeps by calling wait ().
Producer runs and signal() wakes up C1 (or C2).

After consuming the item C1 can wake up producer again.
But what if C1's signal() wakes up C2 instead?

Solution: Use separate conditions for directed signaling.

.

Salman Shamil &} = [©) CSE 323: Operating System Design 13/28

Solving Producer/Consumer Problem (2)

cond_t empty, full; void *consumer(void *arg) {
mutex_t mutex; int i;
int loops = (int) arg;

void *producer(void *arg) { for (i = 0; i < loops; i++) {

Producer/Consumer Buffer with Multiple Slots

int buffer [MAX]; void #*producer(void *arg) {

int fill_ptr = O; int i;

int use_ptr = 0; for (i = 0; i < loops; i++) {
int count = 0; Pthread_mutex_lock (&mutex) ;

while (count == MAX)

void put(int value) { Pthread_cond_wait (&empty, &mutex) ;

buffer[fill_ptr] = value; put(i);

fill_ptr = (£fill_ptr + 1) 7 MAX; Pthread_cond_signal (&fill);

count++; Pthread_mutex_unlock (&mutex) ;
} }

}

int get() {

int tmp = buffer[use_ptr]; void *consumer(void *arg) {

use_ptr = (use_ptr + 1) 7, MAX; int i;

count--; for (i = 0; i < loops; i++) {

return tmp; Pthread_mutex_lock (&mutex) ;
} while (count == 0)

Pthread_cond_wait (&fill, &mutex);
int tmp = get();

int i; Pthread_mutex_lock(&mutex) ;
int loops = (int) arg; while (count == 0)
for (i = 0; i < loops; i++) { Pthread_cond_wait (&full, &mutex);
Pthread_mutex_lock (&mutex) ; int tmp = get();
while (count == 1) Pthread_cond_signal (Zempty) ;
Pthread_cond_wait (&empty, &mutex); Pthread_mutex_unlock(&mutex);
put(i); printf ("%d\n", tmp);
Pthread_cond_signal (&full); ¥
Pthread_mutex_unlock(&mutex) ; T
}
}
Salman Shamil &} =) ©) CSE 323: Operating System Design 14 /28
Semaphore
@ A semaphore extends a CV with an integer as internal state

@ int sem_init(sem_t *sem, unsigned int value):
creates a new semaphore with value slots

@ int sem_wait(sem_t *sem): waits until the semaphore has
at least one slot, decrements the number of slots

@ int sem_post(sem_t *sem): increments the semaphore
(and wakes one waiting thread)

@ int sem_destroy(sem_t *sem): destroys the semaphore
and releases any waiting threads

cond_t empty, fill;
mutex_t mutex;

Salman Shamil & = @0

Pthread_cond_signal (Zempty) ;
Pthread_mutex_unlock (&mutex) ;
printf ("/d\n", tmp);

CSE 323: Operating System Design 15/28

Salman Shamil &} = [©) CSE 323: Operating System Design 16 /28

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Producer/Consumer: Use Semaphores!

sem_t csem, psem;

/* BUFSIZE +items are available for producer to create */
sem_init(&psem, O, BUFSIZE);

/* 0 items are available for consumer */
sem_init (&csem, 0, 0);

Salman Shamil &} = [©) CSE 323: Operating System Design 17/28

Producer: Semaphores

void put(unsigned int val) {
/* we watt until there is buffer space available */
sem_wait (&psem) ;

buffer[ppos] = val;

1

2

3

4

5 /* store element in buffer */
6

7 ppos = (ppos + 1) 7 BUFSIZE;
8

9

/* notify consumer that data %is available */
10 sem_post (&csem) ;

Salman Shamil &} = [©) CSE 323: Operating System Design 18 /28

Consumer: Semaphores

unsigned int get() {
/* wait until data is produced */
sem_wait (&csem) ;

1

2

3

4

5 /* consumer entry */
6 unsigned long val = buffer[cpos];

7 cpos = (cpos + 1) % BUFSIZE;

8

9 /* notify producer that a space has freed up */
10 sem_post(&psem) ;

11 return val;

Salman Shamil & = [©) CSE 323: Operating System Design 19/28

Producer/Consumer: Remaining Issues?

@ We now synchronize between consumers and producers
e Producer waits until buffer space is available
e Consumer waits until data is ready

@ How would you handle multiple producers/consumers?
e Currently no synchronization between producers (or consumers)

Salman Shamil &} = [©) CSE 323: Operating System Design 20/28

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Multiple Producers: Use Locking!

/* mutez handling mutual exclusive access to ppos */
pthread_mutex_t pmutex = PTHREAD_MUTEX_INITIALIZER;

1
2
3 void put(unsigned int val) {

4 unsigned int mypos;

5 /* we watt until there is buffer space avatilable */
6 sem_wait(&psem) ;

7 /* ppos is shared between all producers */

8 pthread_mutex_lock(&pmutex) ;

9 mypos = ppos;

10 ppos = (ppos + 1) 7 BUFSIZE;

11 /* store information in buffer */

12 buffer[mypos] = val;

13 pthread_mutex_unlock(&pmutex) ;

14 sem_post(&csem) ;

15 }

Salman Shamil &} = [©) CSE 323: Operating System Design 21/28

Semaphores/Spin Locks/CVs are interchangeable

@ Each is implementable through a combination of the others
@ Depending on the use-case one is faster than the other

e How often is the critical section executed?

e How many threads compete for a critical section?

e How long is the lock taken?

Salman Shamil &} = [©) CSE 323: Operating System Design 22/28

Implementing a Mutex with a Semaphore

sem_t sem;
sem_init (&sem, 1);

sem_wait (&sem) ;
// critical section
sem_post (&sem) ;

DO WN

Salman Shamil & = [©) CSE 323: Operating System Design 23/28

Implementing a Semaphore with CV/Locks

typedef struct {

int value; // sem wvalue
pthread_mutex_t lock; // access to sem
pthread_cond_t cond; // wait queue
} sem_t;

void sem_init(sem_t *s, int val) {
s->value = val;

pthread_mutex_init (&(s->lock), NULL);
10 pthread_cond_init(&(s->cond), NULL);
11 }

© 00 N O O W N -

Salman Shamil &} = [©) CSE 323: Operating System Design 24 /28

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Implementing a Semaphore with CV/Locks

void sem_wait(sem_t *s) {
pthread_mutex_lock(&(s->lock));
while (s->value <= 0)
pthread_cond_wait (&(s->cond), &(s->lock));
s->value—-—;
pthread_mutex_unlock(&(s->lock));
+

void sem_post(sem_t *s) {
pthread_mutex_lock(&(s->lock));
s—>valuet++;
pthread_cond_signal (&(s->cond)) ;
pthread_mutex_unlock(&(s->lock));

Salman Shamil &} = [©) CSE 323: Operating System Design 25/28

Reader/Writer Locks

@ A single (exclusive) writer, multiple (N) concurrent readers
@ Implement using two semaphores: lock for the data structure,
wlock for the writer
e Both semaphores initialized with (1)
o Writer only waits/posts on wlock when acquiring/releasing
o Reader waits on lock, increments/decrements reader count
o If number of readers==0, must wait/post on wlock

Salman Shamil &} = [©) CSE 323: Operating System Design 26 /28

Reader /Writer Locks

1
2
3
4
5
6
7
8
9

10
11
13
14
15
16

void rwlock_acquire_readlock(rwlock_t *rw) {
sem_wait (&rw->lock) ;
rw->readers++;
if (rw->readers == 1)
sem_wait (&rw->wlock); // first r, also grab wlock
sem_post (&rw->1lock) ;

}

void rwlock_release_readlock(rwlock_t *rw) {
sem_wait (&rw->lock) ;
rw->readers——;
if (rw->readers == 0)
sem_post (&rw->wlock); // last r, also release wlock
sem_post (&rw->1lock) ;

}

e Full Code in Textbook (Page 12)

Salman Shamil & = [©) CSE 323: Operating System Design 27 /28

Summary

@ Spin lock, CV, and semaphore synchronize multiple threads
e Spin lock: atomic access, no ordering, spinning
e Condition variable: atomic access, queue, OS primitive
e Semaphore: shared access to critical section with (int) state
@ All three primitives are equally powerful
e Each primitive can be used to implement both other primitives
e Performance may differ!

Salman Shamil &} = [©) CSE 323: Operating System Design 28/28

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-sema.pdf
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

