
CSE 323: Operating System Design
Condition Variable & Semaphore

Salman Shamil

� � ï §

North South University (NSU)
Fall 2025

Original slides by Mathias Payer and Sanidhya Kashyap [EPFL]

Salman Shamil � � ï § CSE 323: Operating System Design 1 / 28

Lecture Topics

Condition Variables
Producer-Consumer Problem
Semaphores
Signaling through condition Variables and Semaphores
Concurrency Bugs

This slide deck covers chapters 30 and 31 in OSTEP.

Salman Shamil � � ï § CSE 323: Operating System Design 2 / 28

Condition Variables (CV)

In concurrent programming, a common scenario is one thread
waiting for another thread to complete an action.

1 bool done = false;
2
3 /* called in the child to signal termination */
4 void thr_exit() {
5 done = true;
6 }
7 /* called in the parent to wait for a child thread */
8 void thr_join() {
9 while (!done);
10 }

Salman Shamil � � ï § CSE 323: Operating System Design 3 / 28

Condition Variables (CV)

Locks enable mutual exclusion of a shared region.
Unfortunately they are oblivious to ordering

Waiting and signaling (i.e., T2 waits until T1 completes a given
task) could be implemented by spinning until the value changes

But spinning is incredibly inefficient
New synchronization primitive: condition variables

Salman Shamil � � ï § CSE 323: Operating System Design 4 / 28

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://github.com/HexHive/OSTEP-slides
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Condition Variables (CV)

A CV allows:
A thread to wait for a condition
Another thread signals the waiting thread

Implement CV using queues

API: wait, signal or broadcast
wait: wait until a condition is satisfied
signal: wake up one waiting thread
broadcast: wake up all waiting threads

On Linux, pthreads provides CV implementation

Salman Shamil � � ï § CSE 323: Operating System Design 5 / 28

Signal parent that child has exited

1 bool done = false;
2 pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
3 pthread_cond_t c = PTHREAD_COND_INITIALIZER;
4 /* called in the child to signal termination */
5 void thr_exit() {
6 pthread_mutex_lock(&m);
7 done = true;
8 pthread_cond_signal(&c);
9 pthread_mutex_unlock(&m);
10 }
11 /* called in the parent to wait for a child thread */
12 void thr_join() {
13 pthread_mutex_lock(&m);
14 while (!done)
15 pthread_cond_wait(&c, &m);
16 pthread_mutex_unlock(&m);
17 }

Salman Shamil � � ï § CSE 323: Operating System Design 6 / 28

Signal parent that child has exited (2)

pthread_cond_wait(pthread_cond_t *c,
pthread_mutex_t *m)

Assume mutex m is held; atomically unlock mutex when waiting,
retake it when waking up

Question: Why do we need to check a condition before
sleeping?

Thread may have already exited, i.e., no need to wait
Principle: Check the condition before sleeping

Question: Why can’t we use if when waiting?

There can be multiple threads to wait on the same CV. Race
Condition!

Principle: while instead of if when waiting (more on this
later. . . )

Salman Shamil � � ï § CSE 323: Operating System Design 7 / 28

Signal parent that child has exited (3)

Question: Why do we need to proctect done with mutex m?

Mutex m allows one thread to access done for protecting
against missed updates

Parent reads done == false but is interrupted
Child sets done = true and signals but no one is waiting
Parent continues and goes to sleep (forever)

Lock is therefore required for wait/signal synchronization

Salman Shamil � � ï § CSE 323: Operating System Design 8 / 28

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Producer/Consumer Problem

Figure 1: Producer-Consumer/Bounded Buffer Problem

Producer/consumer is a common programming pattern
For example: map (producers) / reduce (consumer)
For example: a concurrent database (consumers) handling
parallel requests from clients (producers)

Clients produce new requests (encoded in a queue)
Handlers consume these requests (popping from the queue)

Salman Shamil � � ï § CSE 323: Operating System Design 9 / 28

Producer/Consumer with Bounded Buffer

One or more producers create items, store them in buffer
One or more consumers process items from buffer

Need synchronization for buffer
Want concurrent production and consumption
Use as many cores as available
Minimize access time to shared data structure

Strategy: use CV to synchronize
Make producers wait if buffer is full
Make consumers wait if buffer is empty (nothing to consume)

Salman Shamil � � ï § CSE 323: Operating System Design 10 / 28

Solving Producer/Consumer Problem
Setup:

Buffer holds a single item
One producer and one consumer

int buffer;
int count = 0; // initially empty

void put(int value) {
assert(count == 0);
count = 1;
buffer = value;

}

int get() {
assert(count == 1);
count = 0;
return buffer;

}

void *producer(void *arg) {
int i;
int loops = (int) arg;
for (i = 0; i < loops; i++) {

put(i);
}

}

void *consumer(void *arg) {
while (1) {

int tmp = get();
printf("%d\n", tmp);

}
}

Problems with this solution
Critical sections in put() and get(). Use locks...

Producer-Consumer dependency for fetching. Needs CV!
Salman Shamil � � ï § CSE 323: Operating System Design 11 / 28

Solving Producer/Consumer Problem

cond_t cond;
mutex_t mutex;

void *producer(void *arg) {
int i;
int loops = (int) arg;
for (i = 0; i < loops; i++) {

Pthread_mutex_lock(&mutex);
if (count == 1)

Pthread_cond_wait(&cond, &mutex);
put(i);
Pthread_cond_signal(&cond);
Pthread_mutex_unlock(&mutex);

}
}

void *consumer(void *arg) {
int i;
int loops = (int) arg;
for (i = 0; i < loops; i++) {

Pthread_mutex_lock(&mutex);
if (count == 0)

Pthread_cond_wait(&cond, &mutex);
int tmp = get();
Pthread_cond_signal(&cond);
Pthread_mutex_unlock(&mutex);
printf("%d\n", tmp);

}
}

Does it work?

Fine for single producer and single consumer.
Change the setup to accommodate multiple producers and/or
multiple consumers. How about now?

Salman Shamil � � ï § CSE 323: Operating System Design 12 / 28

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Solving Producer/Consumer Problem (2)
Setup:

Buffer holds a single item
Multiple producers and/or multiple consumers

Previous code doesn’t work.
No recheck after waking up.

Consider a consumer thread (C1) is waiting for an item
What if a second consumer thread (C2) sneaks in just after an item is
produced? . . . skipping the wait() call.
Producer’s signal() wakes C1 up, but C2 already fetched the item!
Solution: Use while instead of if to recheck upon waking up.

Producers and consumers both waiting on the same CV.

Two consumers C1 and C2 runs and sleeps by calling wait().
Producer runs and signal() wakes up C1 (or C2).
After consuming the item C1 can wake up producer again.
But what if C1’s signal() wakes up C2 instead?
Solution: Use separate conditions for directed signaling.

Salman Shamil � � ï § CSE 323: Operating System Design 13 / 28

Solving Producer/Consumer Problem (2)

cond_t empty, full;
mutex_t mutex;

void *producer(void *arg) {
int i;
int loops = (int) arg;
for (i = 0; i < loops; i++) {

Pthread_mutex_lock(&mutex);
while (count == 1)

Pthread_cond_wait(&empty, &mutex);
put(i);
Pthread_cond_signal(&full);
Pthread_mutex_unlock(&mutex);

}
}

void *consumer(void *arg) {
int i;
int loops = (int) arg;
for (i = 0; i < loops; i++) {

Pthread_mutex_lock(&mutex);
while (count == 0)

Pthread_cond_wait(&full, &mutex);
int tmp = get();
Pthread_cond_signal(&empty);
Pthread_mutex_unlock(&mutex);
printf("%d\n", tmp);

}
}

Salman Shamil � � ï § CSE 323: Operating System Design 14 / 28

Producer/Consumer Buffer with Multiple Slots
int buffer[MAX];
int fill_ptr = 0;
int use_ptr = 0;
int count = 0;

void put(int value) {
buffer[fill_ptr] = value;
fill_ptr = (fill_ptr + 1) % MAX;
count++;

}

int get() {
int tmp = buffer[use_ptr];
use_ptr = (use_ptr + 1) % MAX;
count--;
return tmp;

}

cond_t empty, fill;
mutex_t mutex;

void *producer(void *arg) {
int i;
for (i = 0; i < loops; i++) {

Pthread_mutex_lock(&mutex);
while (count == MAX)

Pthread_cond_wait(&empty, &mutex);
put(i);
Pthread_cond_signal(&fill);
Pthread_mutex_unlock(&mutex);

}
}

void *consumer(void *arg) {
int i;
for (i = 0; i < loops; i++) {

Pthread_mutex_lock(&mutex);
while (count == 0)

Pthread_cond_wait(&fill, &mutex);
int tmp = get();
Pthread_cond_signal(&empty);
Pthread_mutex_unlock(&mutex);
printf("%d\n", tmp);

}
}

Salman Shamil � � ï § CSE 323: Operating System Design 15 / 28

Semaphore

A semaphore extends a CV with an integer as internal state
int sem_init(sem_t *sem, unsigned int value):
creates a new semaphore with value slots
int sem_wait(sem_t *sem): waits until the semaphore has
at least one slot, decrements the number of slots
int sem_post(sem_t *sem): increments the semaphore
(and wakes one waiting thread)
int sem_destroy(sem_t *sem): destroys the semaphore
and releases any waiting threads

Salman Shamil � � ï § CSE 323: Operating System Design 16 / 28

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Producer/Consumer: Use Semaphores!

sem_t csem, psem;

/* BUFSIZE items are available for producer to create */
sem_init(&psem, 0, BUFSIZE);

/* 0 items are available for consumer */
sem_init(&csem, 0, 0);

Salman Shamil � � ï § CSE 323: Operating System Design 17 / 28

Producer: Semaphores

1 void put(unsigned int val) {
2 /* we wait until there is buffer space available */
3 sem_wait(&psem);
4
5 /* store element in buffer */
6 buffer[ppos] = val;
7 ppos = (ppos + 1) % BUFSIZE;
8
9 /* notify consumer that data is available */
10 sem_post(&csem);
11 }

Salman Shamil � � ï § CSE 323: Operating System Design 18 / 28

Consumer: Semaphores

1 unsigned int get() {
2 /* wait until data is produced */
3 sem_wait(&csem);
4
5 /* consumer entry */
6 unsigned long val = buffer[cpos];
7 cpos = (cpos + 1) % BUFSIZE;
8
9 /* notify producer that a space has freed up */
10 sem_post(&psem);
11 return val;
12 }

Salman Shamil � � ï § CSE 323: Operating System Design 19 / 28

Producer/Consumer: Remaining Issues?

We now synchronize between consumers and producers
Producer waits until buffer space is available
Consumer waits until data is ready

How would you handle multiple producers/consumers?
Currently no synchronization between producers (or consumers)

Salman Shamil � � ï § CSE 323: Operating System Design 20 / 28

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Multiple Producers: Use Locking!

/* mutex handling mutual exclusive access to ppos */
1 pthread_mutex_t pmutex = PTHREAD_MUTEX_INITIALIZER;
2
3 void put(unsigned int val) {
4 unsigned int mypos;
5 /* we wait until there is buffer space available */
6 sem_wait(&psem);
7 /* ppos is shared between all producers */
8 pthread_mutex_lock(&pmutex);
9 mypos = ppos;
10 ppos = (ppos + 1) % BUFSIZE;
11 /* store information in buffer */
12 buffer[mypos] = val;
13 pthread_mutex_unlock(&pmutex);
14 sem_post(&csem);
15 }

Salman Shamil � � ï § CSE 323: Operating System Design 21 / 28

Semaphores/Spin Locks/CVs are interchangeable

Each is implementable through a combination of the others
Depending on the use-case one is faster than the other

How often is the critical section executed?
How many threads compete for a critical section?
How long is the lock taken?

Salman Shamil � � ï § CSE 323: Operating System Design 22 / 28

Implementing a Mutex with a Semaphore

1 sem_t sem;
2 sem_init(&sem, 1);
3
4 sem_wait(&sem);
5 ... // critical section
6 sem_post(&sem);

Salman Shamil � � ï § CSE 323: Operating System Design 23 / 28

Implementing a Semaphore with CV/Locks

1 typedef struct {
2 int value; // sem value
3 pthread_mutex_t lock; // access to sem
4 pthread_cond_t cond; // wait queue
5 } sem_t;
6
7 void sem_init(sem_t *s, int val) {
8 s->value = val;
9 pthread_mutex_init(&(s->lock), NULL);
10 pthread_cond_init(&(s->cond), NULL);
11 }

Salman Shamil � � ï § CSE 323: Operating System Design 24 / 28

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Implementing a Semaphore with CV/Locks

1 void sem_wait(sem_t *s) {
2 pthread_mutex_lock(&(s->lock));
3 while (s->value <= 0)
4 pthread_cond_wait(&(s->cond), &(s->lock));
5 s->value--;
6 pthread_mutex_unlock(&(s->lock));
7 }
8
9 void sem_post(sem_t *s) {
10 pthread_mutex_lock(&(s->lock));
11 s->value++;
12 pthread_cond_signal(&(s->cond));
13 pthread_mutex_unlock(&(s->lock));
14 }

Salman Shamil � � ï § CSE 323: Operating System Design 25 / 28

Reader/Writer Locks

A single (exclusive) writer, multiple (N) concurrent readers
Implement using two semaphores: lock for the data structure,
wlock for the writer

Both semaphores initialized with (1)
Writer only waits/posts on wlock when acquiring/releasing
Reader waits on lock, increments/decrements reader count
If number of readers==0, must wait/post on wlock

Salman Shamil � � ï § CSE 323: Operating System Design 26 / 28

Reader/Writer Locks
1 void rwlock_acquire_readlock(rwlock_t *rw) {
2 sem_wait(&rw->lock);
3 rw->readers++;
4 if (rw->readers == 1)
5 sem_wait(&rw->wlock); // first r, also grab wlock
6 sem_post(&rw->lock);
7 }
8
9 void rwlock_release_readlock(rwlock_t *rw) {
10 sem_wait(&rw->lock);
11 rw->readers--;
13 if (rw->readers == 0)
14 sem_post(&rw->wlock); // last r, also release wlock
15 sem_post(&rw->lock);
16 }

Full Code in Textbook (Page 12)

Salman Shamil � � ï § CSE 323: Operating System Design 27 / 28

Summary

Spin lock, CV, and semaphore synchronize multiple threads
Spin lock: atomic access, no ordering, spinning
Condition variable: atomic access, queue, OS primitive
Semaphore: shared access to critical section with (int) state

All three primitives are equally powerful
Each primitive can be used to implement both other primitives
Performance may differ!

Salman Shamil � � ï § CSE 323: Operating System Design 28 / 28

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-sema.pdf
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

