
CSE4509 Operating Systems
Condition Variables

Salman Shamil

� � ï §

United International University (UIU)
Summer 2025

Original slides by Mathias Payer and Sanidhya Kashyap [EPFL]

Salman Shamil � � ï § CSE4509 Operating Systems 1 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://github.com/HexHive/OSTEP-slides
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Lecture Topics

Condition Variables
Producer-Consumer Problem

This slide deck covers chapters 30 in OSTEP.

Salman Shamil � � ï § CSE4509 Operating Systems 2 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Condition Variables (CV)

In concurrent programming, a common scenario is one thread
waiting for another thread to complete an action.

1 bool done = false;
2
3 /* called in the child to signal termination */
4 void thr_exit() {
5 done = true;
6 }
7 /* called in the parent to wait for a child thread */
8 void thr_join() {
9 while (!done);
10 }

Salman Shamil � � ï § CSE4509 Operating Systems 3 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Condition Variables (CV)

Locks enable mutual exclusion of a shared region.
Unfortunately they are oblivious to ordering

Waiting and signaling (i.e., T2 waits until T1 completes a given
task) could be implemented by spinning until the value changes

But spinning is incredibly inefficient
New synchronization primitive: condition variables

Salman Shamil � � ï § CSE4509 Operating Systems 4 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Condition Variables (CV)

Locks enable mutual exclusion of a shared region.
Unfortunately they are oblivious to ordering

Waiting and signaling (i.e., T2 waits until T1 completes a given
task) could be implemented by spinning until the value changes

But spinning is incredibly inefficient
New synchronization primitive: condition variables

Salman Shamil � � ï § CSE4509 Operating Systems 4 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Condition Variables (CV)

A CV allows:
A thread to wait for a condition
Another thread signals the waiting thread

Implement CV using queues

API: wait, signal or broadcast
wait: wait until a condition is satisfied
signal: wake up one waiting thread
broadcast: wake up all waiting threads

On Linux, pthreads provides CV implementation

Salman Shamil � � ï § CSE4509 Operating Systems 5 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Condition Variables (CV)

A CV allows:
A thread to wait for a condition
Another thread signals the waiting thread

Implement CV using queues

API: wait, signal or broadcast
wait: wait until a condition is satisfied
signal: wake up one waiting thread
broadcast: wake up all waiting threads

On Linux, pthreads provides CV implementation

Salman Shamil � � ï § CSE4509 Operating Systems 5 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Signal parent that child has exited

1 bool done = false;
2 pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
3 pthread_cond_t c = PTHREAD_COND_INITIALIZER;
4 /* called in the child to signal termination */
5 void thr_exit() {
6 pthread_mutex_lock(&m);
7 done = true;
8 pthread_cond_signal(&c);
9 pthread_mutex_unlock(&m);
10 }
11 /* called in the parent to wait for a child thread */
12 void thr_join() {
13 pthread_mutex_lock(&m);
14 while (!done)
15 pthread_cond_wait(&c, &m);
16 pthread_mutex_unlock(&m);
17 }

Salman Shamil � � ï § CSE4509 Operating Systems 6 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Signal parent that child has exited (2)

pthread_cond_wait(pthread_cond_t *c,
pthread_mutex_t *m)

Assume mutex m is held; atomically unlock mutex when waiting,
retake it when waking up

Question: Why do we need to check a condition before
sleeping?

Thread may have already exited, i.e., no need to wait
Principle: Check the condition before sleeping

Question: Why can’t we use if when waiting?

Multiple threads could be woken up, racing for done flag
Principle: while instead of if when waiting

Salman Shamil � � ï § CSE4509 Operating Systems 7 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Signal parent that child has exited (2)

pthread_cond_wait(pthread_cond_t *c,
pthread_mutex_t *m)

Assume mutex m is held; atomically unlock mutex when waiting,
retake it when waking up

Question: Why do we need to check a condition before
sleeping?

Thread may have already exited, i.e., no need to wait
Principle: Check the condition before sleeping

Question: Why can’t we use if when waiting?

Multiple threads could be woken up, racing for done flag
Principle: while instead of if when waiting

Salman Shamil � � ï § CSE4509 Operating Systems 7 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Signal parent that child has exited (2)

pthread_cond_wait(pthread_cond_t *c,
pthread_mutex_t *m)

Assume mutex m is held; atomically unlock mutex when waiting,
retake it when waking up

Question: Why do we need to check a condition before
sleeping?

Thread may have already exited, i.e., no need to wait
Principle: Check the condition before sleeping

Question: Why can’t we use if when waiting?

Multiple threads could be woken up, racing for done flag
Principle: while instead of if when waiting

Salman Shamil � � ï § CSE4509 Operating Systems 7 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Signal parent that child has exited (2)

pthread_cond_wait(pthread_cond_t *c,
pthread_mutex_t *m)

Assume mutex m is held; atomically unlock mutex when waiting,
retake it when waking up

Question: Why do we need to check a condition before
sleeping?

Thread may have already exited, i.e., no need to wait
Principle: Check the condition before sleeping

Question: Why can’t we use if when waiting?

Multiple threads could be woken up, racing for done flag
Principle: while instead of if when waiting

Salman Shamil � � ï § CSE4509 Operating Systems 7 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Signal parent that child has exited (3)

Question: Why do we need to proctect done with mutex m?

Mutex m allows one thread to access done for protecting
against missed updates

Parent reads done == false but is interrupted
Child sets done = true and signals but no one is waiting
Parent continues and goes to sleep (forever)

Lock is therefore required for wait/signal synchronization

Salman Shamil � � ï § CSE4509 Operating Systems 8 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Signal parent that child has exited (3)

Question: Why do we need to proctect done with mutex m?

Mutex m allows one thread to access done for protecting
against missed updates

Parent reads done == false but is interrupted
Child sets done = true and signals but no one is waiting
Parent continues and goes to sleep (forever)

Lock is therefore required for wait/signal synchronization

Salman Shamil � � ï § CSE4509 Operating Systems 8 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Producer/Consumer Problem

Figure 1: Producer-Consumer/Bounded Buffer Problem

Producer/consumer is a common programming pattern
For example: map (producers) / reduce (consumer)
For example: a concurrent database (consumers) handling
parallel requests from clients (producers)

Clients produce new requests (encoded in a queue)
Handlers consume these requests (popping from the queue)

Salman Shamil � � ï § CSE4509 Operating Systems 9 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Producer/Consumer with Bounded Buffer

One or more producers create items, store them in buffer
One or more consumers process items from buffer

Need synchronization for buffer
Want concurrent production and consumption
Use as many cores as available
Minimize access time to shared data structure

Strategy: use CV to synchronize
Make producers wait if buffer is full
Make consumers wait if buffer is empty (nothing to consume)

Salman Shamil � � ï § CSE4509 Operating Systems 10 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Producer/Consumer with Bounded Buffer

One or more producers create items, store them in buffer
One or more consumers process items from buffer

Need synchronization for buffer
Want concurrent production and consumption
Use as many cores as available
Minimize access time to shared data structure

Strategy: use CV to synchronize
Make producers wait if buffer is full
Make consumers wait if buffer is empty (nothing to consume)

Salman Shamil � � ï § CSE4509 Operating Systems 10 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Producer/Consumer with Bounded Buffer

One or more producers create items, store them in buffer
One or more consumers process items from buffer

Need synchronization for buffer
Want concurrent production and consumption
Use as many cores as available
Minimize access time to shared data structure

Strategy: use CV to synchronize
Make producers wait if buffer is full
Make consumers wait if buffer is empty (nothing to consume)

Salman Shamil � � ï § CSE4509 Operating Systems 10 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Solving Producer/Consumer Problem
Setup:

Buffer holds a single item
One producer and one consumer

int buffer;
int count = 0; // initially empty

void put(int value) {
assert(count == 0);
count = 1;
buffer = value;

}

int get() {
assert(count == 1);
count = 0;
return buffer;

}

void *producer(void *arg) {
int i;
int loops = (int) arg;
for (i = 0; i < loops; i++) {

put(i);
}

}

void *consumer(void *arg) {
while (1) {

int tmp = get();
printf("%d\n", tmp);

}
}

Problems with this solution
Critical sections in put() and get(). Use locks...

Producer-Consumer dependency for fetching. Needs CV!

Salman Shamil � � ï § CSE4509 Operating Systems 11 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Solving Producer/Consumer Problem
Setup:

Buffer holds a single item
One producer and one consumer

int buffer;
int count = 0; // initially empty

void put(int value) {
assert(count == 0);
count = 1;
buffer = value;

}

int get() {
assert(count == 1);
count = 0;
return buffer;

}

void *producer(void *arg) {
int i;
int loops = (int) arg;
for (i = 0; i < loops; i++) {

put(i);
}

}

void *consumer(void *arg) {
while (1) {

int tmp = get();
printf("%d\n", tmp);

}
}

Problems with this solution
Critical sections in put() and get(). Use locks...

Producer-Consumer dependency for fetching. Needs CV!

Salman Shamil � � ï § CSE4509 Operating Systems 11 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Solving Producer/Consumer Problem
Setup:

Buffer holds a single item
One producer and one consumer

int buffer;
int count = 0; // initially empty

void put(int value) {
assert(count == 0);
count = 1;
buffer = value;

}

int get() {
assert(count == 1);
count = 0;
return buffer;

}

void *producer(void *arg) {
int i;
int loops = (int) arg;
for (i = 0; i < loops; i++) {

put(i);
}

}

void *consumer(void *arg) {
while (1) {

int tmp = get();
printf("%d\n", tmp);

}
}

Problems with this solution
Critical sections in put() and get(). Use locks...

Producer-Consumer dependency for fetching. Needs CV!

Salman Shamil � � ï § CSE4509 Operating Systems 11 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Solving Producer/Consumer Problem
Setup:

Buffer holds a single item
One producer and one consumer

int buffer;
int count = 0; // initially empty

void put(int value) {
assert(count == 0);
count = 1;
buffer = value;

}

int get() {
assert(count == 1);
count = 0;
return buffer;

}

void *producer(void *arg) {
int i;
int loops = (int) arg;
for (i = 0; i < loops; i++) {

put(i);
}

}

void *consumer(void *arg) {
while (1) {

int tmp = get();
printf("%d\n", tmp);

}
}

Problems with this solution
Critical sections in put() and get(). Use locks...

Producer-Consumer dependency for fetching. Needs CV!
Salman Shamil � � ï § CSE4509 Operating Systems 11 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Solving Producer/Consumer Problem

cond_t cond;
mutex_t mutex;

void *producer(void *arg) {
int i;
int loops = (int) arg;
for (i = 0; i < loops; i++) {

Pthread_mutex_lock(&mutex);
if (count == 1)

Pthread_cond_wait(&cond, &mutex);
put(i);
Pthread_cond_signal(&cond);
Pthread_mutex_unlock(&mutex);

}
}

void *consumer(void *arg) {
int i;
int loops = (int) arg;
for (i = 0; i < loops; i++) {

Pthread_mutex_lock(&mutex);
if (count == 0)

Pthread_cond_wait(&cond, &mutex);
int tmp = get();
Pthread_cond_signal(&cond);
Pthread_mutex_unlock(&mutex);
printf("%d\n", tmp);

}
}

Does it work?

Fine for single producer and single consumer.
Change the setup to accommodate multiple producers and/or
multiple consumers. How about now?

Salman Shamil � � ï § CSE4509 Operating Systems 12 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Solving Producer/Consumer Problem

cond_t cond;
mutex_t mutex;

void *producer(void *arg) {
int i;
int loops = (int) arg;
for (i = 0; i < loops; i++) {

Pthread_mutex_lock(&mutex);
if (count == 1)

Pthread_cond_wait(&cond, &mutex);
put(i);
Pthread_cond_signal(&cond);
Pthread_mutex_unlock(&mutex);

}
}

void *consumer(void *arg) {
int i;
int loops = (int) arg;
for (i = 0; i < loops; i++) {

Pthread_mutex_lock(&mutex);
if (count == 0)

Pthread_cond_wait(&cond, &mutex);
int tmp = get();
Pthread_cond_signal(&cond);
Pthread_mutex_unlock(&mutex);
printf("%d\n", tmp);

}
}

Does it work?

Fine for single producer and single consumer.
Change the setup to accommodate multiple producers and/or
multiple consumers. How about now?

Salman Shamil � � ï § CSE4509 Operating Systems 12 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Solving Producer/Consumer Problem (2)
Setup:

Buffer holds a single item
Multiple producers and/or multiple consumers

Previous code doesn’t work.

No recheck after waking up.

Consider a consumer thread (C1) is waiting for an item
What if a second consumer thread (C2) sneaks in just after an item is
produced? . . . skipping the wait() call.
Producer’s signal() wakes C1 up, but C2 already fetched the item!
Solution: Use while instead of if to recheck upon waking up.

Producers and consumers both waiting on the same CV.

Two consumers C1 and C2 runs and sleeps by calling wait().
Producer runs and signal() wakes up C1 (or C2).
After consuming the item C1 can wake up producer again.
But what if C1’s signal() wakes up C2 instead?
Solution: Use separate conditions for directed signaling.

Salman Shamil � � ï § CSE4509 Operating Systems 13 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Solving Producer/Consumer Problem (2)
Setup:

Buffer holds a single item
Multiple producers and/or multiple consumers

Previous code doesn’t work.
No recheck after waking up.

Consider a consumer thread (C1) is waiting for an item
What if a second consumer thread (C2) sneaks in just after an item is
produced? . . . skipping the wait() call.
Producer’s signal() wakes C1 up, but C2 already fetched the item!
Solution: Use while instead of if to recheck upon waking up.

Producers and consumers both waiting on the same CV.

Two consumers C1 and C2 runs and sleeps by calling wait().
Producer runs and signal() wakes up C1 (or C2).
After consuming the item C1 can wake up producer again.
But what if C1’s signal() wakes up C2 instead?
Solution: Use separate conditions for directed signaling.

Salman Shamil � � ï § CSE4509 Operating Systems 13 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Solving Producer/Consumer Problem (2)
Setup:

Buffer holds a single item
Multiple producers and/or multiple consumers

Previous code doesn’t work.
No recheck after waking up.

Consider a consumer thread (C1) is waiting for an item
What if a second consumer thread (C2) sneaks in just after an item is
produced? . . . skipping the wait() call.
Producer’s signal() wakes C1 up, but C2 already fetched the item!
Solution: Use while instead of if to recheck upon waking up.

Producers and consumers both waiting on the same CV.

Two consumers C1 and C2 runs and sleeps by calling wait().
Producer runs and signal() wakes up C1 (or C2).
After consuming the item C1 can wake up producer again.
But what if C1’s signal() wakes up C2 instead?
Solution: Use separate conditions for directed signaling.

Salman Shamil � � ï § CSE4509 Operating Systems 13 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Solving Producer/Consumer Problem (2)

cond_t empty, full;
mutex_t mutex;

void *producer(void *arg) {
int i;
int loops = (int) arg;
for (i = 0; i < loops; i++) {

Pthread_mutex_lock(&mutex);
while (count == 1)

Pthread_cond_wait(&empty, &mutex);
put(i);
Pthread_cond_signal(&full);
Pthread_mutex_unlock(&mutex);

}
}

void *consumer(void *arg) {
int i;
int loops = (int) arg;
for (i = 0; i < loops; i++) {

Pthread_mutex_lock(&mutex);
while (count == 0)

Pthread_cond_wait(&full, &mutex);
int tmp = get();
Pthread_cond_signal(&empty);
Pthread_mutex_unlock(&mutex);
printf("%d\n", tmp);

}
}

Salman Shamil � � ï § CSE4509 Operating Systems 14 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


Producer/Consumer Buffer with Multiple Slots
int buffer[MAX];
int fill_ptr = 0;
int use_ptr = 0;
int count = 0;

void put(int value) {
buffer[fill_ptr] = value;
fill_ptr = (fill_ptr + 1) % MAX;
count++;

}

int get() {
int tmp = buffer[use_ptr];
use_ptr = (use_ptr + 1) % MAX;
count--;
return tmp;

}

cond_t empty, fill;
mutex_t mutex;

void *producer(void *arg) {
int i;
for (i = 0; i < loops; i++) {

Pthread_mutex_lock(&mutex);
while (count == MAX)

Pthread_cond_wait(&empty, &mutex);
put(i);
Pthread_cond_signal(&fill);
Pthread_mutex_unlock(&mutex);

}
}

void *consumer(void *arg) {
int i;
for (i = 0; i < loops; i++) {

Pthread_mutex_lock(&mutex);
while (count == 0)

Pthread_cond_wait(&fill, &mutex);
int tmp = get();
Pthread_cond_signal(&empty);
Pthread_mutex_unlock(&mutex);
printf("%d\n", tmp);

}
}

Salman Shamil � � ï § CSE4509 Operating Systems 15 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil


[Self-study] Semaphore

A semaphore extends a CV with an integer as internal state
int sem_init(sem_t *sem, unsigned int value):
creates a new semaphore with value slots
int sem_wait(sem_t *sem): waits until the semaphore has
at least one slot, decrements the number of slots
int sem_post(sem_t *sem): increments the semaphore
(and wakes one waiting thread)
int sem_destroy(sem_t *sem): destroys the semaphore
and releases any waiting threads

Salman Shamil � � ï § CSE4509 Operating Systems 16 / 16

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&amp;hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

