CSE4509 Operating Systems
Locking

Salman Shamil

Se=Mmo

United International University (UIU)

Summer 2025

Original slides by Mathias Payer and Sanidhya Kashyap [EPFL]

Salman Shamil & = @) CSE4509 Operating Systems 1/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://github.com/HexHive/OSTEP-slides
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Concurrency

Security

Virtualization
Concurrency
Persistence

Salman Shamil # CSE4509 Operating Systems 2/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Lecture Topics

@ Abstraction: locks to protect shared data structures
@ Mechanism: interrupt-based locks

@ Mechanism: atomic hardware locks

@ Busy waiting (spin locks) versus wait queues

This slide deck covers chapters 28, 29, 30 in OSTEP.

Salman Shamil & =) CSE4509 Operating Systems 3/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Race Conditions

@ Concurrent execution leads to race conditions
o Access to shared data must be mediated

Critical section: part of code that accesses shared data
Mutual exclusion: only one process is allowed to execute
critical section at any point in time

@ Atomicity: critical section executes as an uninterruptible block

A mechanism to achieve atomicity is through locking.

Salman Shamil & =) CSE4509 Operating Systems 4/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Locks: Basic Idea

@ Lock variable protects critical section

@ All threads competing for critical section share a lock

@ Only one thread succeeds at acquiring the lock (at a time)
@ Other threads must wait until lock is released

lock_t mutex;
lock(&mutex) ;

cnt = cnt + 1;
unlock (&mutex) ;

Salman Shamil & =) CSE4509 Operating Systems 5/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Locks: Basic Idea

@ Requirements: mutual exclusion, fairness, and performance
e Mutual exclusion: only one thread in critical section
e Fairness: all threads should eventually get the lock
o Performance: low overhead for acquiring/releasing lock
@ Lock implementation requires hardware support
e ... and OS support for performance

Salman Shamil & =) CSE4509 Operating Systems 6/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Lock Operations

@ void lock(lock_t *1ck): acquires the lock, current thread
owns the lock when function returns
@ void unlock(lock_t *1ck): releases the lock

Salman Shamil & =) CSE4509 Operating Systems 7/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Lock Operations

@ void lock(lock_t *1ck): acquires the lock, current thread
owns the lock when function returns
@ void unlock(lock_t *1ck): releases the lock

Note that we assume that the application correctly uses locks for
each access to the critical section.

Salman Shamil & =) CSE4509 Operating Systems 7/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Interrupting Locks

@ Turn off interrupts when executing critical sections
o Neither hardware nor timer can interrupt execution
e Prevent scheduler from switching to another thread
o Code between interrupts executes atomically

void acquire(lock_t *1) {
disable_interrupts();

}

void release(lock_t *1) {
enable_interrupts();

}

Salman Shamil & =) CSE4509 Operating Systems 8/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Interrupting Locks (Disadvantages)

@ No support for locking multiple locks

@ Only works on uniprocessors (no support for locking across
cores in multicore system)

@ Process may keep lock for arbitrary length

e Hardware interrupts may get lost (hardware only stores
information that interrupt X happened, not how many times it
happened)

Salman Shamil & =) CSE4509 Operating Systems 9/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Interrupting Locks (Perspective)

@ Interrupt-based locks are extremely simple
@ Work well for low-complexity code

Salman Shamil & =) CSE4509 Operating Systems 10/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Interrupting Locks (Perspective)

@ Interrupt-based locks are extremely simple
@ Work well for low-complexity code

@ Implementing locks through interrupts is great for MCUs

Salman Shamil & =) CSE4509 Operating Systems 10/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

(Faulty) Spin Lock

@ Use a shared variable to synchronize access to critical section

bool lockl = false;
void acquire(bool *lock) {
while (xlock); /* spin until we grab the lock */

*lock = true;

}

void release(bool *lock) {
*lock = false

Salman Shamil & = @) CSE4509 Operating Systems 11/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

(Faulty) Spin Lock

@ Use a shared variable to synchronize access to critical section

bool lockl = false;

void acquire(bool *lock) {
while (*lock); /* spin until we grab the lock */
*lock = true;

}

void release(bool *lock) {
*lock = false

}

Bug: both threads can grab the lock if thread is preempted before
setting the lock but after the while loop completes.

Salman Shamil & =) CSE4509 Operating Systems 11/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Required Hardware Support

Locking requires an atomic test-and-set instruction.

int TestAndSet(int *addr, int wval) {
int old = *addr;
*addr = val;
return old;

}

This pseudocode in ¢ demonstrates the basic idea of an atomic
exchange instruction (xchg on x86 or 1dstub on SPARC).

Salman Shamil & =) CSE4509 Operating Systems 12/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Test-and-set Spin Lock

int lockl; // 0 -> lock is available, 1 -> lock is held

void acquire(int *lock) {
while (TestAndSet(lock, 1) == 1); /* spin */
}

void release(int *lock) {
*lock = 0;
}

acquire (&lockl) ;
critical_section();
release (&lockl);

This time we guarantee that the thread that changes lock from 0 to
1 gets to execute its critical section.

Salman Shamil & =) CSE4509 Operating Systems 13/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Compare-and-swap Spin Lock

int CompareAndSwap(int *ptr, int expt, int new) {
int actual = *ptr;
if (actual == expt) {
*ptr = new,
}

return actual;

Salman Shamil & =) CSE4509 Operating Systems 14 /18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Compare-and-swap Spin Lock

int CompareAndSwap(int *ptr, int expt, int new) {
int actual = *ptr;
if (actual == expt) {
*ptr = new,
}
return actual;

}

@ Returns the actual value (before the potential update),
indicating whether it succeeded or not.
@ More powerful than test-and-set [blind vs conditional update]

Salman Shamil & =) CSE4509 Operating Systems 14 /18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Compare-and-swap Spin Lock

int CompareAndSwap(int *ptr, int expt, int new) {
int actual = *ptr;
if (actual == expt) {
*ptr = new,
}

return actual;

}

@ Returns the actual value (before the potential update),
indicating whether it succeeded or not
@ More powerful than test-and-set [blind vs conditional update]

void acquire_cas(int *lock) {
while (CompareAndSwap(lock, 0, 1) == 1); /* spin */
}

Salman Shamil & =) CSE4509 Operating Systems 14 /18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Ticket Lock with Fetch-And-Add

o Neither test-and-set nor compare-and-swap guarantees

progress.
o A thread may spin forever.

Salman Shamil & =) CSE4509 Operating Systems 15/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Ticket Lock with Fetch-And-Add

o Neither test-and-set nor compare-and-swap guarantees

progress.
o A thread may spin forever.

@ Another hardware primitive Fetch-And-Add

int FetchAndAdd(int *ptr) {
int old = *ptr;
*ptr = old + 1;
return old;

}

Salman Shamil & =) CSE4509 Operating Systems

15/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Ticket Lock with Fetch-And-Add

@ Neither test-and-set nor compare-and-swap guarantees
progress.
o A thread may spin forever.

@ Another hardware primitive Fetch-And-Add

int FetchAndAdd(int *ptr) {
int old = *ptr;
*ptr = old + 1;
return old;

}

@ Fetch-And-Add can be used to build Ticket Lock, where a
thread once queued, will eventually acquire the lock.

typedef struct __lock_t {
int ticket;
int turn;

} lock_t;

Salman Shamil & =) CSE4509 Operating Systems 15/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Ticket Lock with Fetch-And-Add

void lock_init(lock_t *lock) {
lock->ticket = 0O;
lock->turn = O;

void lock(lock_t *lock) {
// get my ticket

int myturn = FetchAndAdd(&lock->ticket) ;

while (lock->turn != myturn) {
5 // spin until it's my turn

}

void unlock(lock_t *lock) {
// mext ticket goes
lock->turn = lock->turn + 1;

Salman Shamil & = @) CSE4509 Operating Systems

16 /18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Spin Lock: Reduce Spinning

@ A simple way to reduce the cost of spinning is to yield ()
whenever lock acquisition fails
e This is no longer a “strict” spin lock as we give up control to
the scheduler every loop iteration

void acquire(bool *1lck) {
while (TestAndSet(1l, 1) == 1) {
yieldO;
}

Salman Shamil & =) CSE4509 Operating Systems 17/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

A Better Way: Queue Lock

@ ldea: instead of spinning, put threads on a queue

@ Wake up thread(s) when lock is released
e Wake up all threads to have them race for the lock
o Selectively wake one thread up for fairness

@ OS Support: park() and unpark(threadID)

Salman Shamil & =) CSE4509 Operating Systems 18/18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

