
CSE4509 Operating Systems
Locking

Salman Shamil

� � ï §

United International University (UIU)
Summer 2025

Original slides by Mathias Payer and Sanidhya Kashyap [EPFL]

Salman Shamil � � ï § CSE4509 Operating Systems 1 / 18

Concurrency

Vi
rt

ua
liz

at
io

n

Co
nc

ur
re

nc
y

Pe
rs

ist
en

ce

Security

Salman Shamil � � ï § CSE4509 Operating Systems 2 / 18

Lecture Topics

Abstraction: locks to protect shared data structures
Mechanism: interrupt-based locks
Mechanism: atomic hardware locks
Busy waiting (spin locks) versus wait queues

This slide deck covers chapters 28, 29, 30 in OSTEP.

Salman Shamil � � ï § CSE4509 Operating Systems 3 / 18

Race Conditions

Concurrent execution leads to race conditions
Access to shared data must be mediated

Critical section: part of code that accesses shared data
Mutual exclusion: only one process is allowed to execute
critical section at any point in time
Atomicity: critical section executes as an uninterruptible block

A mechanism to achieve atomicity is through locking.

Salman Shamil � � ï § CSE4509 Operating Systems 4 / 18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://github.com/HexHive/OSTEP-slides
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Locks: Basic Idea

Lock variable protects critical section
All threads competing for critical section share a lock
Only one thread succeeds at acquiring the lock (at a time)
Other threads must wait until lock is released

lock_t mutex;
...
lock(&mutex);
cnt = cnt + 1;
unlock(&mutex);

Salman Shamil � � ï § CSE4509 Operating Systems 5 / 18

Locks: Basic Idea

Requirements: mutual exclusion, fairness, and performance
Mutual exclusion: only one thread in critical section
Fairness: all threads should eventually get the lock
Performance: low overhead for acquiring/releasing lock

Lock implementation requires hardware support
. . . and OS support for performance

Salman Shamil � � ï § CSE4509 Operating Systems 6 / 18

Lock Operations

void lock(lock_t *lck): acquires the lock, current thread
owns the lock when function returns
void unlock(lock_t *lck): releases the lock

Note that we assume that the application correctly uses locks for
each access to the critical section.

Salman Shamil � � ï § CSE4509 Operating Systems 7 / 18

Interrupting Locks

Turn off interrupts when executing critical sections
Neither hardware nor timer can interrupt execution
Prevent scheduler from switching to another thread
Code between interrupts executes atomically

void acquire(lock_t *l) {
disable_interrupts();

}

void release(lock_t *l) {
enable_interrupts();

}

Salman Shamil � � ï § CSE4509 Operating Systems 8 / 18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Interrupting Locks (Disadvantages)

No support for locking multiple locks
Only works on uniprocessors (no support for locking across
cores in multicore system)
Process may keep lock for arbitrary length
Hardware interrupts may get lost (hardware only stores
information that interrupt X happened, not how many times it
happened)

Salman Shamil � � ï § CSE4509 Operating Systems 9 / 18

Interrupting Locks (Perspective)

Interrupt-based locks are extremely simple
Work well for low-complexity code

Implementing locks through interrupts is great for MCUs

Salman Shamil � � ï § CSE4509 Operating Systems 10 / 18

(Faulty) Spin Lock

Use a shared variable to synchronize access to critical section

bool lock1 = false;

void acquire(bool *lock) {
while (*lock); /* spin until we grab the lock */
*lock = true;

}

void release(bool *lock) {
*lock = false

}

Bug: both threads can grab the lock if thread is preempted before
setting the lock but after the while loop completes.

Salman Shamil � � ï § CSE4509 Operating Systems 11 / 18

Required Hardware Support

Locking requires an atomic test-and-set instruction.

int TestAndSet(int *addr, int val) {
int old = *addr;
*addr = val;
return old;

}

This pseudocode in c demonstrates the basic idea of an atomic
exchange instruction (xchg on x86 or ldstub on SPARC).

Salman Shamil � � ï § CSE4509 Operating Systems 12 / 18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Test-and-set Spin Lock

int lock1; // 0 -> lock is available, 1 -> lock is held

void acquire(int *lock) {
while (TestAndSet(lock, 1) == 1); /* spin */

}

void release(int *lock) {
*lock = 0;

}

acquire(&lock1);
critical_section();
release(&lock1);

This time we guarantee that the thread that changes lock from 0 to
1 gets to execute its critical section.

Salman Shamil � � ï § CSE4509 Operating Systems 13 / 18

Compare-and-swap Spin Lock

int CompareAndSwap(int *ptr, int expt, int new) {
int actual = *ptr;
if (actual == expt) {

*ptr = new;
}
return actual;

}

Returns the actual value (before the potential update),
indicating whether it succeeded or not.
More powerful than test-and-set [blind vs conditional update]

void acquire_cas(int *lock) {
while (CompareAndSwap(lock, 0, 1) == 1); /* spin */

}

Salman Shamil � � ï § CSE4509 Operating Systems 14 / 18

Ticket Lock with Fetch-And-Add
Neither test-and-set nor compare-and-swap guarantees
progress.

A thread may spin forever.

Another hardware primitive Fetch-And-Add

int FetchAndAdd(int *ptr) {
int old = *ptr;
*ptr = old + 1;
return old;

}

Fetch-And-Add can be used to build Ticket Lock, where a
thread once queued, will eventually acquire the lock.

typedef struct __lock_t {
int ticket;
int turn;

} lock_t;

Salman Shamil � � ï § CSE4509 Operating Systems 15 / 18

Ticket Lock with Fetch-And-Add
void lock_init(lock_t *lock) {

lock->ticket = 0;
lock->turn = 0;

}

void lock(lock_t *lock) {
// get my ticket
int myturn = FetchAndAdd(&lock->ticket);
while (lock->turn != myturn) {

; // spin until it's my turn
}

}

void unlock(lock_t *lock) {
// next ticket goes
lock->turn = lock->turn + 1;

}
Salman Shamil � � ï § CSE4509 Operating Systems 16 / 18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Spin Lock: Reduce Spinning

A simple way to reduce the cost of spinning is to yield()
whenever lock acquisition fails

This is no longer a “strict” spin lock as we give up control to
the scheduler every loop iteration

void acquire(bool *lck) {
while (TestAndSet(l, 1) == 1) {

yield();
}

}

Salman Shamil � � ï § CSE4509 Operating Systems 17 / 18

A Better Way: Queue Lock

Idea: instead of spinning, put threads on a queue
Wake up thread(s) when lock is released

Wake up all threads to have them race for the lock
Selectively wake one thread up for fairness

OS Support: park() and unpark(threadID)

Salman Shamil � � ï § CSE4509 Operating Systems 18 / 18

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

