
CSE4509 Operating Systems
Thread

Salman Shamil

� � ï §

United International University (UIU)
Summer 2025

Original slides by Mathias Payer and Sanidhya Kashyap [EPFL]

Salman Shamil � � ï § CSE4509 Operating Systems 1 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://github.com/HexHive/OSTEP-slides
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Concurrency

Vi
rt

ua
liz

at
io

n

Co
nc

ur
re

nc
y

Pe
rs

ist
en

ce

Security

Salman Shamil � � ï § CSE4509 Operating Systems 2 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Lecture Topics

Thread abstraction
Multi-threading challenges
Key concurrency terms and definitions

This slide deck covers chapters 26 and 27 in OSTEP.

[Credits: Portions of the content are adapted from slides based on
the OSTEP book by Prof. Youjip Won (Hanyang University) and
Prof. Mythili Vutukuru (IIT Bombay), with thanks.]

Salman Shamil � � ï § CSE4509 Operating Systems 3 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Threads: Executions context

Threads are independent execution context
similar to processes
EXCEPT they share the same address
space

We only had one thread in a process so far
single-threaded program
one Program Counter (PC)
one Stack Pointer (SP)

Salman Shamil � � ï § CSE4509 Operating Systems 4 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Threads: Executions context

Threads are independent execution context
similar to processes
EXCEPT they share the same address
space

We only had one thread in a process so far
single-threaded program
one Program Counter (PC)
one Stack Pointer (SP)

Salman Shamil � � ï § CSE4509 Operating Systems 4 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Multi-threaded Process

What happens if we want multiple
threads in parallel?

shared address space but separate
execution stream
is that possible with a shared stack or
PC?

each thread has separate stack and PC
leading to independent function calls
able to execute different parts

code and heap segments are still shared

user-level threads: scheduled by thread library in user space
kernel-level threads: scheduled directly by the OS

Salman Shamil � � ï § CSE4509 Operating Systems 5 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Multi-threaded Process

What happens if we want multiple
threads in parallel?

shared address space but separate
execution stream
is that possible with a shared stack or
PC?
each thread has separate stack and PC

leading to independent function calls
able to execute different parts

code and heap segments are still shared

user-level threads: scheduled by thread library in user space
kernel-level threads: scheduled directly by the OS

Salman Shamil � � ï § CSE4509 Operating Systems 5 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Multi-threaded Process

What happens if we want multiple
threads in parallel?

shared address space but separate
execution stream
is that possible with a shared stack or
PC?
each thread has separate stack and PC

leading to independent function calls
able to execute different parts

code and heap segments are still shared

user-level threads: scheduled by thread library in user space
kernel-level threads: scheduled directly by the OS

Salman Shamil � � ï § CSE4509 Operating Systems 5 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Multi-threaded Process

What happens if we want multiple
threads in parallel?

shared address space but separate
execution stream
is that possible with a shared stack or
PC?
each thread has separate stack and PC

leading to independent function calls
able to execute different parts

code and heap segments are still shared

user-level threads: scheduled by thread library in user space
kernel-level threads: scheduled directly by the OS

Salman Shamil � � ï § CSE4509 Operating Systems 5 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Threads & Concurrency
Concurrency vs Parallelism

Concurrency: multiple processes/threads making progress
during the same time period

Possibly on a single core by interleaving executions
Better CPU utilization (e.g., when one thread is blocked on I/O,
another runs)

Parallelism: running multiple processes in parallel over
multiple CPU cores

A single process can achieve paralellism with multiple threads

How do they communicate?

Processes need complicated Inter-Process Communication
Extra memory footprint for IPC
Threads can do it by simply using global variables (shared)
Question: When to use threads vs processes?

Salman Shamil � � ï § CSE4509 Operating Systems 6 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Threads & Concurrency
Concurrency vs Parallelism

Concurrency: multiple processes/threads making progress
during the same time period

Possibly on a single core by interleaving executions
Better CPU utilization (e.g., when one thread is blocked on I/O,
another runs)

Parallelism: running multiple processes in parallel over
multiple CPU cores

A single process can achieve paralellism with multiple threads

How do they communicate?

Processes need complicated Inter-Process Communication
Extra memory footprint for IPC
Threads can do it by simply using global variables (shared)
Question: When to use threads vs processes?

Salman Shamil � � ï § CSE4509 Operating Systems 6 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Creating Threads

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

#include "common.h"
#include "common_threads.h"

void *mythread(void *arg) {
printf("%s\n", (char *) arg);
return NULL;

}

int main(int argc, char *argv[]) {
if (argc != 1) {

fprintf(stderr, "usage: main\n");
exit(1);

}

pthread_t p1, p2;
printf("main: begin\n");
Pthread_create(&p1, NULL, mythread, "A");
Pthread_create(&p2, NULL, mythread, "B");
// join waits for the threads to finish
Pthread_join(p1, NULL);
Pthread_join(p2, NULL);
printf("main: end\n");
return 0;

}

Salman Shamil � � ï § CSE4509 Operating Systems 7 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Shared data is useful but not so simple!
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include "common.h"
#include "common_threads.h"

// shared global variables
int max;
volatile int counter = 0;
// ˆ no caching on register

void *mythread(void *arg) {
char *letter = arg;
int i; // on stack

// (private per thread)
printf("%s: begin \

[addr of i: %p]\n",
letter, &i);

for (i = 0; i < max; i++) {
counter = counter + 1;
// shared: only one

}
printf("%s: done\n", letter);
return NULL;

}

int main(int argc, char *argv[]) {
if (argc != 2) {

fprintf(stderr, \
"usage: main-first <loopcount>\n");
exit(1);

}
max = atoi(argv[1]);

pthread_t p1, p2;
printf("main: begin \

[counter = %d]\n", counter);
Pthread_create(&p1, NULL, mythread, "A");
Pthread_create(&p2, NULL, mythread, "B");
// join waits for the threads to finish
Pthread_join(p1, NULL);
Pthread_join(p2, NULL);
printf("main: done \

[counter: %d] \
[should: %d]\n",
counter, max*2);

return 0;
}
Will the final count always be 2 × max?

Salman Shamil � � ï § CSE4509 Operating Systems 8 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Uncontrolled Scheduling
assembly instructions for counter = counter + 1 (in x86)

100 mov 0x8049a1c, %eax
105 add $0x1, %eax
108 mov %eax, 0x8049a1c

[Critical Section] consider a context switch after ‘add‘.

(after instruction)
OS Thread 1 Thread 2 PC eax counter

before critical section 100 0 50
mov 8049a1c,%eax 105 50 50
add $0x1,%eax 108 51 50

interrupt
save T1
restore T2 100 0 50

mov 8049a1c,%eax 105 50 50
add $0x1,%eax 108 51 50
mov %eax,8049a1c 113 51 51

interrupt
save T2
restore T1 108 51 51

mov %eax,8049a1c 113 51 51

Salman Shamil � � ï § CSE4509 Operating Systems 9 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Uncontrolled Scheduling
assembly instructions for counter = counter + 1 (in x86)

100 mov 0x8049a1c, %eax
105 add $0x1, %eax
108 mov %eax, 0x8049a1c

[Critical Section] consider a context switch after ‘add‘.

(after instruction)
OS Thread 1 Thread 2 PC eax counter

before critical section 100 0 50
mov 8049a1c,%eax 105 50 50
add $0x1,%eax 108 51 50

interrupt
save T1
restore T2 100 0 50

mov 8049a1c,%eax 105 50 50
add $0x1,%eax 108 51 50
mov %eax,8049a1c 113 51 51

interrupt
save T2
restore T1 108 51 51

mov %eax,8049a1c 113 51 51

Salman Shamil � � ï § CSE4509 Operating Systems 9 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Uncontrolled Scheduling
assembly instructions for counter = counter + 1 (in x86)

100 mov 0x8049a1c, %eax
105 add $0x1, %eax
108 mov %eax, 0x8049a1c

[Critical Section] consider a context switch after ‘add‘.

(after instruction)
OS Thread 1 Thread 2 PC eax counter

before critical section 100 0 50
mov 8049a1c,%eax 105 50 50
add $0x1,%eax 108 51 50

interrupt
save T1
restore T2 100 0 50

mov 8049a1c,%eax 105 50 50
add $0x1,%eax 108 51 50
mov %eax,8049a1c 113 51 51

interrupt
save T2
restore T1 108 51 51

mov %eax,8049a1c 113 51 51

Salman Shamil � � ï § CSE4509 Operating Systems 9 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Uncontrolled Scheduling
assembly instructions for counter = counter + 1 (in x86)

100 mov 0x8049a1c, %eax
105 add $0x1, %eax
108 mov %eax, 0x8049a1c

[Critical Section] consider a context switch after ‘add‘.

(after instruction)
OS Thread 1 Thread 2 PC eax counter

before critical section 100 0 50
mov 8049a1c,%eax 105 50 50
add $0x1,%eax 108 51 50

interrupt
save T1
restore T2 100 0 50

mov 8049a1c,%eax 105 50 50
add $0x1,%eax 108 51 50
mov %eax,8049a1c 113 51 51

interrupt
save T2
restore T1 108 51 51

mov %eax,8049a1c 113 51 51

Salman Shamil � � ï § CSE4509 Operating Systems 9 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Uncontrolled Scheduling
assembly instructions for counter = counter + 1 (in x86)

100 mov 0x8049a1c, %eax
105 add $0x1, %eax
108 mov %eax, 0x8049a1c

[Critical Section] consider a context switch after ‘add‘.

(after instruction)
OS Thread 1 Thread 2 PC eax counter

before critical section 100 0 50
mov 8049a1c,%eax 105 50 50
add $0x1,%eax 108 51 50

interrupt
save T1
restore T2 100 0 50

mov 8049a1c,%eax 105 50 50
add $0x1,%eax 108 51 50
mov %eax,8049a1c 113 51 51

interrupt
save T2
restore T1 108 51 51

mov %eax,8049a1c 113 51 51

Salman Shamil � � ï § CSE4509 Operating Systems 9 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Uncontrolled Scheduling
assembly instructions for counter = counter + 1 (in x86)

100 mov 0x8049a1c, %eax
105 add $0x1, %eax
108 mov %eax, 0x8049a1c

[Critical Section] consider a context switch after ‘add‘.

(after instruction)
OS Thread 1 Thread 2 PC eax counter

before critical section 100 0 50
mov 8049a1c,%eax 105 50 50
add $0x1,%eax 108 51 50

interrupt
save T1
restore T2 100 0 50

mov 8049a1c,%eax 105 50 50
add $0x1,%eax 108 51 50
mov %eax,8049a1c 113 51 51

interrupt
save T2
restore T1 108 51 51

mov %eax,8049a1c 113 51 51

Salman Shamil � � ï § CSE4509 Operating Systems 9 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Concurrency Terms

Race Condition

Concurrent execution of threads leading to different results
depending on the order of execution. Such programs are
indeterminate, producing different outputs across runs.

Critical Section

Portion of code resulting in a race condition, usually by accessing a
shared resource (e.g., a variable or data structure).

Mutual Exclusion

Guarantees a single thread executes a critical section at a time,
preventing race conditions. [Atomicity]
Next: We need to design synchronization primitives for mutex.

Salman Shamil � � ï § CSE4509 Operating Systems 10 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Concurrency Terms

Race Condition

Concurrent execution of threads leading to different results
depending on the order of execution. Such programs are
indeterminate, producing different outputs across runs.

Critical Section

Portion of code resulting in a race condition, usually by accessing a
shared resource (e.g., a variable or data structure).

Mutual Exclusion

Guarantees a single thread executes a critical section at a time,
preventing race conditions. [Atomicity]
Next: We need to design synchronization primitives for mutex.

Salman Shamil � � ï § CSE4509 Operating Systems 10 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Concurrency Terms

Race Condition

Concurrent execution of threads leading to different results
depending on the order of execution. Such programs are
indeterminate, producing different outputs across runs.

Critical Section

Portion of code resulting in a race condition, usually by accessing a
shared resource (e.g., a variable or data structure).

Mutual Exclusion

Guarantees a single thread executes a critical section at a time,
preventing race conditions. [Atomicity]
Next: We need to design synchronization primitives for mutex.

Salman Shamil � � ï § CSE4509 Operating Systems 10 / 10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

