CSE4509 Operating Systems
Thread

Concurrency

Salman Shamil

S=moO

United International University (UIU)

Summer 2025

Original slides by Mathias Payer and Sanidhya Kashyap [EPFL]

Salman Shamil &} = @ ©) CSE4509 Operating Systems 1/10

Lecture Topics

@ Thread abstraction
@ Multi-threading challenges
@ Key concurrency terms and definitions

This slide deck covers chapters 26 and 27 in OSTEP.

[Credits: Portions of the content are adapted from slides based on
the OSTEP book by Prof. Youjip Won (Hanyang University) and
Prof. Mythili Vutukuru (IIT Bombay), with thanks.]

Salman Shamil & = [©) CSE4509 Operating Systems 3/10

Security
<
.0 9 ©
© 5 O
= = o]
© = 0
2 2 0
= o (0]
> O o
Salman Shamil & = @0 CSE4509 Operating Systems 2/10
Threads: Executions context
@ Threads are independent execution context OKB
o similar to processes e Program Code
o EXCEPT they share the same address Heap
space 2KB
@ We only had one thread in a process so far
e single-threaded program
e one Program Counter (PC)
e one Stack Pointer (SP) (free)
15KB
Stack
16KB
Salman Shamil & = [©) CSE4509 Operating Systems 4/10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://github.com/HexHive/OSTEP-slides
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Multi-threaded Process Threads & Concurrency

Concurrency vs Parallelism

e What happens if we want multiple 0KB
. P Cod: . i i
threads in parallel? e rogram Code e Concurrency: multiple processes/threads making progress
e shared address space but separate Heap during the same time period
execution stream 2KB e Possibly on a single core by interleaving executions
e is that possible with a shared stack or o Better CPU utilization (e.g., when one thread is blocked on I/0O,
PC? (00} another runs)
e each thread has separate stack and PC @ Parallelism: running multiple processes in parallel over
o leading to independent function calls multiple CPU cores
o able to execute different parts Stack (2) o A single process can achieve paralellism with multiple threads
e code and heap segments are still shared
(free) g
15KB How do they communicate?
Stack (1)
16K8 @ Processes need complicated Inter-Process Communication
@ user-level threads: scheduled by thread library in user space @ Extra memory footprint for IPC
o kernel-level threads: scheduled directly by the OS @ Threads can do it by simply using global variables (shared)
@ Question: When to use threads vs processes?
Salman Shamil &} = [©) CSE4509 Operating Systems 5/10 Salman Shamil &} = [©) CSE4509 Operating Systems 6/10
Creating Threads Shared data is useful but not so simple!
#include <stdio.h> int main(int argc, char *argv[]) {
#include <stdlib.h> if (argec '= 2) {
#include <pthread.h> fprintf (stderr, \
#' 1 d n .hll n . 1 —_ 1 n .
#include <stdio.h> int main(int argc, char *argv[]) { #12212(1: "EZEZE ohreads b u%:%i). .maln first <loopcount>\n");
#include <stdlib.h> if (arge !'= 1) { - . . exi H
#include <pthread.h> fp].:in:,f.(stderr, "usage: main\n"); // shared global variables max = atoi(argv[i]);
' exit(1); int max;
#include "common.h" ¥ . .
. R R volatile int counter = O; pthread_t pl, p2;
#include "common_threads.h - .
// = mo caching on register printf ("main: begin \
pthread_t pl, p2; 0
void *mythread(void *arg) { printf ("main: begin\n"); . . [counter = %d]\n", counter);
R "o " . ’ void *mythread(void *arg) { Pthread_create(&pl, NULL, mythread, "A");
printf("%s\n", (char *) arg); Pthread_create(&pl, NULL, mythread, "A"); _
. char *letter = arg; Pthread_create(&p2, NULL, mythread, "B");
return NULL; Pthread_create(&p2, NULL, mythread, "B"); . . o . o
s - 7 int i; // on stack // join waits for the threads to finish
} // join waits for the threads to finish . .
.. // (private per thread) Pthread_join(pl, NULL);
Pthread_join(pl, NULL); . "o . .
JO1 printf("%s: begin \ Pthread_join(p2, NULL);
Pthread_join(p2, NULL); I " : o
rintf ("main: end\n"): laddr of i: %pl\n", printf ("main: done \
I:eturn o ’ letter, &i); [counter: %d] \
X ; for (i = 0; i < max; i++) { [should: %d]\n",
counter = counter + 1; counter, max*2) ;
// shared: only one return O;
} }
printf("%s: done\n", letter); W.ill the final count always be 2 x max?
return NULL;
}
Salman Shamil & = [©) CSE4509 Operating Systems 7/10 Salman Shamil &} = [©) CSE4509 Operating Systems 8/10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Uncontrolled Scheduling

Concurrency Terms

@ assembly instructions for counter = counter + 1 (in x86)

100 mov 0x8049alc, %eax
105 add $0x1, %eax
108 mov %eax, 0x8049alc

[Critical Section] consider a context switch after ‘add".

(after instruction)
oS Thread 1 Thread 2 PC eax counter
before critical section 100 0 50
mov 8049alc,%eax 105 50 50
add $0x1,%eax 108 51 50
interrupt
save T1
restore T2 100 0 50
mov 8049alc,%eax | 105 50 50
add $0x1,%eax 108 51 50
mov %eax,8049alc | 113 51 51
interrupt
save T2
restore T1 108 51 51
mov %eax,8049alc 113 51 51

Salman Shamil &} = [©) CSE4509 Operating Systems 9/10

Concurrent execution of threads leading to different results
depending on the order of execution. Such programs are
indeterminate, producing different outputs across runs.

Critical Section

| \

Portion of code resulting in a race condition, usually by accessing a
shared resource (e.g., a variable or data structure).

i \

Guarantees a single thread executes a critical section at a time,
preventing race conditions. [Atomicity]
Next: We need to design synchronization primitives for mutex.

Salman Shamil &} = [©) CSE4509 Operating Systems 10/10

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

