CSE 323: Operating System Design

Virtual Memory (Segmentation)

Salman Shamil

S=MmoO

North South University (NSU)

Fall 2025

Original slides by Mathias Payer and Sanidhya Kashyap [EPFL]

Salman Shamil & = @) CSE 323: Operating System Design 1/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://github.com/HexHive/OSTEP-slides
https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Lecture Topics

@ Abstraction: address space

@ Policy: isolation

@ Mechanism: address translation
@ Mechanism: heap management

This slide deck covers chapters 13-17 in OSTEP.

Salman Shamil & =) CSE 323: Operating System Design 2/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Goal: isolate processes (and their faults) from each other.

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Virtualization

Goal: isolate processes (and their faults) from each other.

Virtualization enables isolation, but isolation requires separation. A
process must be prohibited to access memory/registers of another
process.

@ Step 1: Virtual CPU provides illusion of private CPU registers
(mechanisms and policy)
@ Step 2: Virtual RAM provides illusion of private memory

Salman Shamil & =) CSE 323: Operating System Design 3/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

History: Uniprogramming

@ Initially the OS was a set of library routines
@ Issue 1: only one task at a time
@ Issue 2: no isolation between OS / task

Code
0
0S Heap
J
Task T
Stack
2m—1

Salman Shamil & =) CSE 323: Operating System Design 4/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Sharing Memory

O0KB

64KB

128KB

192KB

256KB

320KB

384KB

448KB

512KB

Figure 1. Three processes

Operating System
(code, data, etc.)

(free)

Process C
(code, data, etc.)

Process B
(code, data, etc.)

(free)

Process A
(code, data, etc.)

(free)

(free)

sharing memory

Salman Shamil

@ A simplified way to share memory
among multiple processes.
@ Assumption: all three processes fit
inside the physical memory.
@ Space sharing has its own
challenges.
e Q: Why can't we do time-sharing?
e Q: How to protect each process
(and OS) from other processes?

CSE 323: Operating System Design 5/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Goals for Multiprogramming

o Transparency: processes are unaware of memory sharing and
the existence of other processes

@ Protection: OS/other processes are isolated from any process
(read/write)

o Efficiency (1): do not waste too much memory for structures
(e.g., fragmentation)

o Efficiency (2): do not make programs too slow (use hardware
support if necessary)

@ Sharing: processes may share part of address space

Salman Shamil & =) CSE 323: Operating System Design 6/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Abstraction: Address Space

Address Space: each process has a set of addresses that map to
data (i.e., a map from pointers to bytes)

@ Static: code and global variables
e Dynamic: stack, heap

Salman Shamil & =) CSE 323: Operating System Design 7/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Abstraction: Address Space

Address Space: each process has a set of addresses that map to
data (i.e., a map from pointers to bytes)

@ Static: code and global variables
e Dynamic: stack, heap

Why do we need dynamic memory?

Salman Shamil & =) CSE 323: Operating System Design 7/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Abstraction: Address Space

Address Space: each process has a set of addresses that map to
data (i.e., a map from pointers to bytes)

@ Static: code and global variables
e Dynamic: stack, heap

Why do we need dynamic memory?

@ The amount of required memory may be task dependent
@ Input size may be unknown at compile time

@ Conservative pre-allocation would be wasteful

@ Recursive functions (invocation frames)

Salman Shamil & =) CSE 323: Operating System Design 7/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Dynamic Data Structure: Stack

@ Data is returned in reverse order from insertion
o push(1); push(2); push(3);
e pop()->3; pop()—>2; pop()->1;

@ Memory is freed in reverse order from allocation
e a=alloc(20); b=alloc(10);
o free(b); free(a);

Salman Shamil & =) CSE 323: Operating System Design 8/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Dynamic Data Structure: Stack

@ Data is returned in reverse order from insertion
o push(1); push(2); push(3);
e pop()->3; pop()—>2; pop()->1;

@ Memory is freed in reverse order from allocation
e a=alloc(20); b=alloc(10);
o free(b); free(a);

@ Straight-forward implementation: bump or decrement a pointer
e Advantage: no fragmentation, no metadata
o Note: deallocations must be in reverse order

Salman Shamil & =) CSE 323: Operating System Design 8/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Excursion: Procedure Invocation Frames

Calling a function allocates an invocation frame to store all local
variables and the necessary context to return to the callee.

int called(int a, int b) {
int tmp = a * b;
return tmp / 42;

}

void main(int argc, char *argv[]) {
int tmp = called(argc, argc);
}

What data is stored in the invocation frame of called?

Salman Shamil & =) CSE 323: Operating System Design 9/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Excursion: Procedure Invocation Frames

Calling a function allocates an invocation frame to store all local
variables and the necessary context to return to the callee.

int called(int a, int b) {
int tmp = a * b;
return tmp / 42;

}

void main(int argc, char *argv[]) {
int tmp = called(argc, argc);

}

What data is stored in the invocation frame of called?

Slot for int tmp

Slots for the parameters a, b
Slot for the return code pointer
Usual ordering: b, a, RIP, tmp

Salman Shamil & =) CSE 323: Operating System Design 9/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Excursion: Procedure Invocation Frames

Calling a function allocates an invocation frame to store all local
variables and the necessary context to return to the callee.

int called(int a, int b) {
int tmp = a * b;
return tmp / 42;

}

void main(int argc, char *argv[]) {
int tmp = called(argc, argc);

}

What data is stored in the invocation frame of called?

Slot for int tmp

Slots for the parameters a, b
Slot for the return code pointer
Usual ordering: b, a, RIP, tmp

The compiler creates the necessary code.

Salman Shamil & =) CSE 323: Operating System Design 9/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Stack for Procedure Invocation Frames

@ The stack enables simple storage of function invocation frames
@ Stores calling context and sequence of active parent frames
@ Memory allocated in function prologue, freed when returned

Salman Shamil & =) CSE 323: Operating System Design 10/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Stack for Procedure Invocation Frames

@ The stack enables simple storage of function invocation frames
@ Stores calling context and sequence of active parent frames
@ Memory allocated in function prologue, freed when returned

What happens to the data when function returns?

Salman Shamil & =) CSE 323: Operating System Design 10/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Stack for Procedure Invocation Frames

@ The stack enables simple storage of function invocation frames
@ Stores calling context and sequence of active parent frames
@ Memory allocated in function prologue, freed when returned

What happens to the data when function returns?

@ Data from previous function lingers, overwritten when the next
function initializes its data

Salman Shamil & =) CSE 323: Operating System Design 10/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Quiz: Scopes and Stack

int a = 2;

int called(int b) {
int ¢ = a * b;
printf("a: %d b: %d c: %d\n", a, b, c);
a=>5;
return c;

}

int main(int argc, char* argv) {
int b = 2, ¢ = 3;
printf("a: %d b: %d c: %d\n", a, b, ¢);
b = called(c);
printf("a: %d b: %d c: %d\n", a, b, c);
return O;

Salman Shamil & = @ O CSE 323: Operating System Design 11/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Dynamic Data Structure: Heap

A heap of randomly allocated memory objects with statically
unknown size and statically unknown allocation patterns. The size
and lifetime of each allocated object is unknown.

API: malloc creates an object, free indicates it is no longer used.

Salman Shamil & =) CSE 323: Operating System Design 12/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Dynamic Data Structure: Heap

A heap of randomly allocated memory objects with statically
unknown size and statically unknown allocation patterns. The size
and lifetime of each allocated object is unknown.

API: malloc creates an object, free indicates it is no longer used.

How would you manage such a data structure?

Salman Shamil & =) CSE 323: Operating System Design 12/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Heap: Naive Implementation

char storagel[4096], *heap = storage;
char *alloc(size_t len) {

char *tmp = heap;

heap = heap + len;

return tmp;

}

void free(char *ptr) {}

@ Advantage: simple

e Disadvantage: no reuse, will run out of memory
e unused fragments

Salman Shamil & =) CSE 323: Operating System Design 13/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Heap: Free List

Idea: abstract heap into list of free blocks.

@ Keep track of free space, program handles allocated space
o Keep a list of all available memory objects and their size

Implementation:

@ malloc: take a free block, split, put remainder back on free list
@ free: add block to free list

Salman Shamil & =) CSE 323: Operating System Design 14 /34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Heap: Implementation Strategies

@ Allocation: find a fitting object (first, best, worst fit)
o first fit: find the first object in the list and split it
o best fit: find the object that is closest to the size
e worst fit: find the largest object and split it

Salman Shamil & =) CSE 323: Operating System Design 15/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Heap: Implementation Strategies

@ Allocation: find a fitting object (first, best, worst fit)
o first fit: find the first object in the list and split it
o best fit: find the object that is closest to the size
e worst fit: find the largest object and split it

@ Free: merge adjacent blocks
o if the adjacent region is free, merge the two blocks

Salman Shamil & =) CSE 323: Operating System Design 15/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Quiz: where is it?

int g;

int main(int argc, char *argv[]) {
int foo;
char *c = (char*)malloc(argc*sizeof (int));
free(c);

}

Possible storage locations: stack, heap, globals, code

Salman Shamil & = @) CSE 323: Operating System Design 16 /34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Quiz: where is it?

int g;

int main(int argc, char *argv[]) {
int foo;
char *c = (char*)malloc(argc*sizeof (int));
free(c);

}

Possible storage locations: stack, heap, globals, code

Stack: argc, argv, foo, ¢
Heap: *c

Globals: g

Code: main

Salman Shamil & =) CSE 323: Operating System Design 16 /34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Virtualizing Memory

@ Challenge: how can we run multiple programs in parallel?
o Addresses are hard coded in code
e Static allocation? What about executing the same task twice?
@ Possible sharing mechanisms:
e Time sharing
Static relocation/allocation
Base (+ bounds)
Segmentation
Virtual memory

Salman Shamil & =) CSE 323: Operating System Design 17 /34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Virtualizing memory: time sharing

@ Reuse idea from CPU virtualization
e OS virtualizes CPU by storing register state to memory
e Could virtualize memory by storing state to disk

e Disadvantage: incredibly bad performance due to /O latency
@ Better: space sharing (divide memory among processes)

Salman Shamil & =) CSE 323: Operating System Design 18 /34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Tangent: track that memory access

e How many memory accesses are executed?
@ What kind of memory accesses (read or write)?

0x10:
0x13:
0x16:
0x18:

mov
mov
add
mov

-0x4 (%xrbp) , %edx
-0x8 (%rbp) , heax
Yedx , %heax

%eax,-0x8 (%rbp)

Salman Shamil & = @) CSE 323: Operating System Design 19/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Tangent: track that memory access

e How many memory accesses are executed?
@ What kind of memory accesses (read or write)?

0x10:
0x13:
0x16:
0x18:

0x10:
0x13:
0x16:
0x18:

mov
mov
add
mov

mov
mov
add
mov

-0x4 (%xrbp) , %edx
-0x8 (%rbp) , heax
Yedx , %heax

%eax,-0x8 (%rbp)

-0x4 (%xrbp) , %edx
-0x8 (Jirbp) , heax
Yedx , heax

%eax,-0x8 (%rbp)

Salman Shamil & = @)

Load 0x10 Exe
Load 0x13 Exe
Load 0x16 Exe
Load 0x18 Exe

CSE 323: Operating System Design

Load *(%rbp-4)
Load * (%rbp-8)

Store *(rbp-8)

19/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Virtualizing

memory: static relocation

0x10:
0x13:
0x16:
0x18:

mov -0x4 (%rbp) ,%edx
mov -0x8(J%rbp) ,%eax
add %edx,%eax

call 60 <printf@plt>

OS relocates text segment (code area) when new task is started:

Salman Shamil & = @)

CSE 323: Operating System Design

20/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Virtualiz

ing memory: static relocation

0x10:
0x13:
0x16:
0x18:

mov -0x4 (%rbp) ,%edx
mov -0x8(J%rbp) ,%eax
add Yedx,%eax

call 60 <printf@plt>

OS relocates text segment (code area) when new task is started:

Task

0x1010:
0x1013:
0x1016:
0x1018:

1

mov -0x4 (%rbp) ,%edx
mov -0x8(%rbp) ,’%eax
add Yedx,’%eax

call 1060 <printf>

Salman Shamil & = @)

Task

0x5010:
0x5013:
0x5016:
0x5018:

2

mov -0x4 (Jrbp) ,%edx
mov -0x8(%rbp) ,’%eax
add %edx,%eax

call 5060 <printf>

CSE 323: Operating System Design 20/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Virtualizing memory: static relocation

@ When loading a program, relocate it to an assigned area
o Carefully adjusts all pointers in code and globals, set the stack
pointer to the assigned stack

Salman Shamil & =) CSE 323: Operating System Design 21/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Virtualizing memory: static relocation

(]

When loading a program, relocate it to an assigned area
Carefully adjusts all pointers in code and globals, set the stack
pointer to the assigned stack

There is only one address space, no physical /virtual separation
Issue 1: no separation between processes (no integrity or
confidentiality)

Issue 2: fragmentation, address space remains fixed as long as
program runs

Issue 3: programs have to be adjusted when loaded (e.g.,
target of a jump will be at different addresses depending on the
location in the address space)

Salman Shamil & =) CSE 323: Operating System Design 21/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Challenge: illusion of private address space

How can the OS provide the illusion of a private address
space to each process?

Salman Shamil & =) CSE 323: Operating System Design 22/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Virtualizing memory: dynamic relocation

@ What if, instead of relocating the memory accesses ahead of
time, the hardware could help us relocate accesses just-in-time?

@ In dynamic relocation, a hardware mechanism translates each
memory address from the program’s viewpoint to the
hardware's viewpoint.

Interposition: the hardware will intercept each memory access and
dynamically and transparently translate for the program from virtual
addresses (VA) to physical addresses (PA). The OS manages the
book keeping of which physical addresses are associated with what
processes.

Salman Shamil & =) CSE 323: Operating System Design 23 /34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Indirection

We can solve any problem by introducing an extra level of
indirection. [Except for the problem of too many layers of
indirection.|

(Andrew Koenig attributed the quote to Butler Lampson who
attributed it to David J. Wheeler, adding another layer of
indirection.)

Salman Shamil & =) CSE 323: Operating System Design 24 /34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

MMU: Memory Management Unit

Memory
CPU (—Pll\/II\/IU

@ Process runs on the CPU

@ OS controls CPU and MMU

@ MMU translates virtual addresses (logical addresses) to
physical addresses

Salman Shamil & =) CSE 323: Operating System Design 25 /34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

How do you keep the process from modifying the MMU
configuration?

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Privilege modes

How do you keep the process from modifying the MMU
configuration?

Separation: OS runs at higher privileges than process

OS privileges include special instructions for MMU config
Switch from user-space (process) to kernel space through
system call (special call instruction)

OS returns to unprivileged user mode (with special return)
Exceptions in user space (e.g., illegal memory access, division
by 0) switch to privileged mode, OS handles the exception

Salman Shamil & =) CSE 323: Operating System Design 26 /34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

A simple MMU: base register

@ Idea: translate virtual to physical addresses by adding offset.
e Store offset in special register (OS controlled, used by MMU).
@ Each process has a different offset in their base register

Salman Shamil & =) CSE 323: Operating System Design 27 /34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

A simple MMU: base register

0 KiB
4 KiB €—— base register
8 KiB
12 KiB

16 KiB

20 KiB

Salman Shamil & = @ O CSE 323: Operating System Design 28 /34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

A simple MMU: base register

@ Set base register to 0x1000 for P1

@ Load of address 0x100, becomes 0x1100,
@ Set base register to 0x3000 for P2

@ Load of address 0x52, becomes 0x3052,

Salman Shamil & =) CSE 323: Operating System Design 29/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

A simple MMU: bese redt ol

@ Is this design free from security issues?
o Are processes P1 and P2 truly separated?

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

A simple MMU: base register

@ Is this design free from security issues?
o Are processes P1 and P2 truly separated?

No! P1 can access the memory of P2 as the base register is simply
added. In the previous example, with base=0x1000, accessing
address 0x2000, will access the first byte of memory of P2 while P1
is executing!

Salman Shamil & =) CSE 323: Operating System Design 30/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

A simple MMU: base and bounds

@ Simple solution: base and bounds
o Base register sets minimum address
e Bounds register sets (virtual) limit of the address space, highest
physical address that is accessible becomes base+bounds

@ New concept: access check

if (addr < bounds) {
return *(base+addr) ;
} else {
throw new SegFaultException();

}

Note: bounds can either store the size of the address space or the
upper memory address; this is an implementation choice.

Salman Shamil & =) CSE 323: Operating System Design 31/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

A simple MMU: base and bounds

@ Achieves security (isolation property is satisfied)
@ Achieves performance (translation and check are cheap)
@ What's the remaining problem?

Salman Shamil & =) CSE 323: Operating System Design 32/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

A simple MMU: base and bounds

@ Achieves security (isolation property is satisfied)
@ Achieves performance (translation and check are cheap)
@ What's the remaining problem?

@ All memory must be continuously allocated
o Waste of physical memory (all must be allocated)
o No (easy) sharing between processes

Salman Shamil & =) CSE 323: Operating System Design 32/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

A simple MMU: segmentation

Instead of a single base/bounds register pair, have one pair per
memory area:

@ Code Segment (CS on x86, default for instructions)

o Data Segment (DS on x86, default for data accesses)

e Stack Segment (SS on x86, default for push/pop)

o Extra Segments (ES, FS, and GS on x86, for anything else)

Allow a process to have several regions of continuous memory
mapped from a virtual address space to a physical address space.

Note that hardware also allows to override default segment registers,
allowing the programmer to specify which segment should be used.
E.g., loading data from the code segment.

Salman Shamil & =) CSE 323: Operating System Design 33/34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Summary

OS manages access to constrained resources
e Principle: limited direct execution (bare metal when possible,
intercept when needed)
o CPU: time sharing between processes (low switching cost)
o Memory: space sharing (disk 1/O is slow, so time sharing is
expensive)
Programs use dynamic data
e Stack: program invocation frames
o Heap: unordered data, managed by user-space library (allocator)
Time sharing: one process uses all of memory
Base register: share space, calculate address through offset
Base + bounds: share space, limit process’ address space
Segments: movable segments, virtual offsets to segment base

Salman Shamil & =) CSE 323: Operating System Design 34 /34

https://s-shamil.github.io/
https://scholar.google.com/citations?user=w6A616MAAAAJ
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

