
CSE4509 Operating Systems
Virtual CPU (Scheduling)

Salman Shamil

� � ï §

United International University (UIU)
Summer 2025

Original slides by Mathias Payer and Sanidhya Kashyap [EPFL]

Salman Shamil � � ï § CSE4509 Operating Systems 1 / 35

Lecture Topics

Scheduling has two aspects:
1 How to switch from one process to another?
2 What process should run next?

Divide-and-conquer by OS:

Mechanism: context switch (how to switch)
Mechanism: preemption (keeping control)
Policy: scheduling (where to switch to)

[we discuss this first. . .]

This slide deck covers chapters 7–10 in OSTEP.

Salman Shamil � � ï § CSE4509 Operating Systems 2 / 35

What is a Scheduling Policy?

The context switch mechanism will take care of how the kernel
switches from one process to another, namely by storing its context
and restoring the context of the other process.

The scheduling policy determines which process should run next. If
there is only one “ready” process then the answer is easy. If there
are more processes then the policy decides in which order processes
execute.

Salman Shamil � � ï § CSE4509 Operating Systems 3 / 35

Scheduler Metrics

When analyzing scheduler policies, we use the following terms:

Metric Definition Goal

Utilization what fraction of time is the CPU
executing a program

maximize

Turnaround time total global time from process creation
to process exit

minimize

Response time time from becoming ready to being
scheduled

minimize

Fairness all processes get a fair share of CPU
over time

no starvation

Progress allow processes to make forward
progress

minimize kernel
interrupts

Salman Shamil � � ï § CSE4509 Operating Systems 4 / 35

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://github.com/HexHive/OSTEP-slides
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Reminder: Process States

Blocked

Running Ready

I/O: start I/O: done

Deschedule

Schedule

Salman Shamil � � ï § CSE4509 Operating Systems 5 / 35

Scheduling Assumptions

Let’s understand scheduler policies step by step. We start with
some simplifying assumptions

Each job runs for the same amount of time
All jobs arrive at the same time
All jobs only use the CPU (no I/O)
Run-time of jobs is known
For now, we assume a single CPU

Salman Shamil � � ï § CSE4509 Operating Systems 6 / 35

First In, First Out (FIFO)

Tasks A, B, C of len=2
arrive at T=0 (0,2)

Average turnaround
(2+4+6)/3 = 4

Average response
(0+2+4)/3 = 2

A B C

0 1 2 3 4 5 6 7 8 9 10

Finding: easy, simple, straight forward. What are drawbacks?

Salman Shamil � � ï § CSE4509 Operating Systems 7 / 35

Scheduling Assumptions

Each job runs for the same amount of time
All jobs arrive at the same time
All jobs only use the CPU (no I/O)
Run-time of jobs is known

Salman Shamil � � ï § CSE4509 Operating Systems 8 / 35

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

FIFO challenge: long running task

Task A is now of len=6

Average turnaround
(6+8+10)/3 = 8

Average response
(0+6+8)/3 = 4.7

A B C

0 1 2 3 4 5 6 7 8 9 10

Finding: long jobs delay short jobs, turnaround/response time suffer!

Salman Shamil � � ï § CSE4509 Operating Systems 9 / 35

SJF: Shortest Job First

Long running tasks delay other tasks (convoy effect: one long
running task delays many short running tasks like a truck
followed by many cars)
Short jobs must wait for completion of long task

New scheduler: choose ready job with shortest runtime!

Salman Shamil � � ï § CSE4509 Operating Systems 10 / 35

SJF: turnaround

Task A is now of len=6

Average turnaround
(2+4+10)/3 = 5.3

Average response
(0+2+4)/3 = 2

B C A

0 1 2 3 4 5 6 7 8 9 10

Salman Shamil � � ï § CSE4509 Operating Systems 11 / 35

Scheduling Assumptions

Each job runs for the same amount of time
All jobs arrive at the same time
All jobs only use the CPU (no I/O)
Run-time of jobs is known

Salman Shamil � � ï § CSE4509 Operating Systems 12 / 35

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

SJF: another convoy!

Tasks B, C now arrive at 1

Average turnaround
(6+7+9)/3 = 7.3

Average response
(0+5+7)/3 = 4

A B C

0 1 2 3 4 5 6 7 8 9 10

Finding: long running jobs cannot be interrupted, delay short jobs

Salman Shamil � � ï § CSE4509 Operating Systems 13 / 35

Preemptive Scheduling

Previous schedulers (FIFO, SJF) are non-preemptive.
Non-preemptive schedulers only switch to another process if
the current process gives up the CPU voluntarily.
Preemptive schedulers may take CPU control at any time,
switching to another process according to the scheduling policy.

New scheduler: Shortest Time to Completion First (STCF),
always run the job that will complete the fastest.

Salman Shamil � � ï § CSE4509 Operating Systems 14 / 35

Preemptive Scheduling: STCF

Tasks B, C now arrive at 1

Average turnaround
(2+4+10)/3 = 5.3

“First” response
(0+0+2)/3 = 0.7
Task A takes a break!

A B C A

0 1 2 3 4 5 6 7 8 9 10

Finding: reschedule whenever new jobs arrive, prioritize short jobs

Salman Shamil � � ï § CSE4509 Operating Systems 15 / 35

Next Metric: Response Time

So far, we have optimized for turnaround time (i.e., completing
the tasks as fast as possible).

On an interactive system, response time is equally important,
i.e., how long it takes until a task is scheduled.

Salman Shamil � � ï § CSE4509 Operating Systems 16 / 35

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Turnaround vs Response Time

Tasks A (2,0) and B (1, 1)
B turnaround: 2
B response time: 1 A B

0 1 2 3 4 5 6 7 8 9 10

Salman Shamil � � ï § CSE4509 Operating Systems 17 / 35

Round Robin (RR)

Previous schedulers optimize for turnaround.

Optimize response time: alternate ready processes every
fixed-length time slice.

Salman Shamil � � ï § CSE4509 Operating Systems 18 / 35

Round Robin (RR)

Tasks A, B, C (0, 3)

Average response time
(0+1+2)/3 = 1

Compare to FIFO where
average response time is 3
Turnaround increases

(7+8+9)/3 = 8 for RR
(3+6+9)/3 = 6 for SJF

A B C A B C A B C

0 1 2 3 4 5 6 7 8 9 10

Finding: responsiveness increases turnaround (for equally long tasks)

Salman Shamil � � ï § CSE4509 Operating Systems 19 / 35

Scheduling Assumptions

Each job runs for the same amount of time
All jobs arrive at the same time
All jobs only use the CPU (no I/O)
Run-time of jobs is known

Salman Shamil � � ï § CSE4509 Operating Systems 20 / 35

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

I/O Awareness

So far, the scheduler only considers preemptive events (i.e., the
timer runs out) or process termination/creation to reschedule.

I/O is usually incredibly slow and can be carried out
asynchronously

CPU

Disk

A B A B A B A B A B

00 20 40 60 80 100 120 140
Time

Finding: scheduler must consider I/O, unused time used by others

Salman Shamil � � ï § CSE4509 Operating Systems 21 / 35

Scheduling Assumptions

Each job runs for the same amount of time
All jobs arrive at the same time
All jobs only use the CPU (no I/O)
Run-time of jobs is known

Salman Shamil � � ï § CSE4509 Operating Systems 22 / 35

Advanced Scheduling: Multi-Level Feedback Queue (MLFQ)

Goal: general purpose scheduling

Challenge: The scheduler must support both long running
background tasks (batch processes) and low latency foreground
tasks (interactive processes).

Batch process: response time not important, cares for long run
times (reduce the cost of context switches, cares for lots of
CPU, not when)
Interactive process: response time critical, short bursts (context
switching cost not important, not much CPU needed but
frequently)

Salman Shamil � � ï § CSE4509 Operating Systems 23 / 35

MLFQ: Basics
Approach: multiple levels of round robin (one queue per level)

Each level has higher
priority and preempts all
lower levels
Process at higher level will
always be scheduled first
Set of rules adjusts
priorities dynamically

Rule 1: if prio(A) > prio(B) then A runs.
Rule 2: if prio(A) == prio(B) then A, B run in RR.

Salman Shamil � � ï § CSE4509 Operating Systems 24 / 35

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

MLFQ: Priority Adjustments
Goal: use past behavior as predictor for future behavior.

Rule 3: processes start at top priority
Rule 4: if process uses up full time slice, lower its priority

keep at same level if it voluntarily yields (e.g., for I/O)

Figure 1: CPU-intensive job getting to the bottom queue over time

Salman Shamil � � ï § CSE4509 Operating Systems 25 / 35

MLFQ: Serving Interactive Jobs

A short or interactive job may come later. Automatically gets higher
priority with Rules 3-4 in place.

Figure 2: MLFQ Serving short or interactive jobs

All good? Do you see any problem?

Salman Shamil � � ï § CSE4509 Operating Systems 26 / 35

MLFQ Challenges: Starvation

Low priority (long-running) tasks may never run on a busy system.

Rule 5: periodically move all jobs to the topmost queue

Figure 3: MLFQ prevents starvation via periodic priority boosts

Salman Shamil � � ï § CSE4509 Operating Systems 27 / 35

MLFQ Challenges: Gaming the Scheduler
High priority process could yield before its time slice is up,
remaining at high priority.

[Updated] Rule 4: account for total time at priority level (and
not just time of the last time slice)

Figure 4: Impact of incorporating Gaming Tolerance

Salman Shamil � � ï § CSE4509 Operating Systems 28 / 35

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

MLFQ: Serving CPU-bound and IO-bound Processes

Interactive Processes: require quick responses and have short CPU bursts.

Batch Processes: can tolerate delays but need long & uninterrupted CPU time.

Remember where context switching can become costly?

High levels have short time slices, lower levels run for longer

Decreasing Priority

Ti
m

e
Sl

ice

Salman Shamil � � ï § CSE4509 Operating Systems 29 / 35

MLFQ Summary

Rule 1: if prio(A) > prio(B) then A runs.
Rule 2: if prio(A) == prio(B) A, B run in RR
Rule 3: new processes start with top priority
Rule 4: lower process’ priority when whole time slice is used
Rule 5: periodically move all jobs to the topmost queue

Salman Shamil � � ï § CSE4509 Operating Systems 30 / 35

[Self-Study] More Scheduling Algorithms

Due to time constraints, we will stop with scheduling policies here.

For interested readers, I recommend exploring the following chapters.

Scheduling: Proportional Share
Lottery Scheduling
Stride Scheduling
Completely Fair Scheduler (CFS)

Multiprocessor Scheduling
Single-Queue Multiprocessor Scheduling (SQMS)
Multi-Queue Multiprocessor Scheduling (MQMS)

Salman Shamil � � ï § CSE4509 Operating Systems 31 / 35

Scheduling Mechanisms

How does the kernel switch from one process to another?

Context switch saves running process’ state in kernel structure
Context switch restores state of next process
Context switch transfers control to next process and “returns”

How does the kernel stay in control?

Processes may yield() or execute I/O
Configurable timer interrupts let OS take control

Note: a context switch is transparent to the process

Salman Shamil � � ï § CSE4509 Operating Systems 32 / 35

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-lottery.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-multi.pdf
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Mechanism: Context Switch

A context switch is a mechanism that allows the OS to store the
current process state and switch to some other, previously stored
context.

Reasons for a context switch:

The process completes/exits
The process executes a slow H/W operation (loading from
disk) and the OS switches to another task that is ready
The hardware requires OS help and issues an interrupt
The OS decides to preempt the task and switch to another task
(i.e., the processes has used up its time slice)

Salman Shamil � � ï § CSE4509 Operating Systems 33 / 35

Mechanism: Preemption

If a task never gives up control (yield()), exits, or performs I/O
then it could run forever and the OS could not gain control.

The OS therefore sets a timer before scheduling a process. If the
timer expires, the hardware interrupts the execution of the process
and switches to the kernel. The kernel then decides if the process
may continue.

Salman Shamil � � ï § CSE4509 Operating Systems 34 / 35

Summary

Context switch and preemption are fundamental mechanisms
that allow the OS to remain in control and to implement higher
level scheduling policies.
Schedulers need to optimize for different metrics: utilization,
turnaround, response time, fairness and forward progress

FIFO: simple, non-preemptive scheduler
SJF: non-preemptive, prevents process jams
STFC: preemptive, prevents jams of late processes
RR: preemptive, great response time, bad turnaround
MLFQ: preemptive, more realistic

Insight: past behavior is good predictor for future behavior

Salman Shamil � � ï § CSE4509 Operating Systems 35 / 35

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

