
CSE4509 Operating Systems
Virtual CPU (Processes and Threads)

Salman Shamil

� � ï §

United International University (UIU)
Summer 2025

Original slides by Mathias Payer and Sanidhya Kashyap [EPFL]

Salman Shamil � � ï § CSE4509 Operating Systems 1 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil
https://github.com/HexHive/OSTEP-slides
https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Virtualization

Vi
rt

ua
liz

at
io

n

Co
nc

ur
re

nc
y

Pe
rs

ist
en

ce

Security

Salman Shamil � � ï § CSE4509 Operating Systems 2 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Lecture Topics

The process abstraction
A notion on address spaces
How processes are created
Interaction between processes and the OS

This slide deck covers chapters 4–6 in OSTEP.

Salman Shamil � � ï § CSE4509 Operating Systems 3 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

What is a Process?

Figure 1: Processes are controlled by the Operating System

Think of Process as a running program, initiated and maintained
by the operating system.

Salman Shamil � � ï § CSE4509 Operating Systems 4 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

CPU, Memory, and Disk: Limitations

Status quo1:

CPUs execute an endless stream of instructions (in memory)
All system memory is in a contiguous physical address space
The disk is a finite set of blocks
All instructions execute in privileged mode

Is it good enough to run multiple programs simultaneously?

To handle concurrent programs, the OS must separate the execution
of different programs, providing the illusion to programs that each
program is the only running program.

The virtual process abstraction provides this illusion.

1Some simplifying assumptions apply to make our life easier.
Salman Shamil � � ï § CSE4509 Operating Systems 5 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

CPU, Memory, and Disk: Limitations

Status quo1:

CPUs execute an endless stream of instructions (in memory)
All system memory is in a contiguous physical address space
The disk is a finite set of blocks
All instructions execute in privileged mode

Is it good enough to run multiple programs simultaneously?

To handle concurrent programs, the OS must separate the execution
of different programs, providing the illusion to programs that each
program is the only running program.

The virtual process abstraction provides this illusion.

1Some simplifying assumptions apply to make our life easier.
Salman Shamil � � ï § CSE4509 Operating Systems 5 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

CPU, Memory, and Disk: Limitations

Status quo1:

CPUs execute an endless stream of instructions (in memory)
All system memory is in a contiguous physical address space
The disk is a finite set of blocks
All instructions execute in privileged mode

Is it good enough to run multiple programs simultaneously?

To handle concurrent programs, the OS must separate the execution
of different programs, providing the illusion to programs that each
program is the only running program.

The virtual process abstraction provides this illusion.

1Some simplifying assumptions apply to make our life easier.
Salman Shamil � � ï § CSE4509 Operating Systems 5 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

CPU, Memory, and Disk: Limitations

Status quo1:

CPUs execute an endless stream of instructions (in memory)
All system memory is in a contiguous physical address space
The disk is a finite set of blocks
All instructions execute in privileged mode

Is it good enough to run multiple programs simultaneously?

To handle concurrent programs, the OS must separate the execution
of different programs, providing the illusion to programs that each
program is the only running program.

The virtual process abstraction provides this illusion.

1Some simplifying assumptions apply to make our life easier.
Salman Shamil � � ï § CSE4509 Operating Systems 5 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Process Abstraction

A program consists of static code and data, e.g., on the disk.
A process is an instance of a program (at any time there may
be 0 or more instances of a program running, e.g., a user may
run multiple concurrent shells).

Salman Shamil � � ï § CSE4509 Operating Systems 6 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Process Definition

A process is an execution stream in the context of a
process state. The execution stream is the sequence
of executing instructions (i.e., the “thread of control”).
The process state encompasses everything that executing
instructions can affect or are affected by (e.g., registers,
address space, persistent state such as files).

Note: state has two sides, the process view and the OS view. The
OS keeps track of the address space and persistence.

Salman Shamil � � ï § CSE4509 Operating Systems 7 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Process Creation (1/2)

CPU Memory

DiskProgram

code
data

Salman Shamil � � ï § CSE4509 Operating Systems 8 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Process Creation (2/2)

CPU Memory

DiskProgram

code
data

Process

code
data
heap
stack

Salman Shamil � � ï § CSE4509 Operating Systems 9 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Comparison of Terms:

A program is on-disk application, consisting of code and data;
programs become a process when they are executed
A process is a running instance of a program. A process starts
with a single thread of execution and an address space.
A process can launch multiple threads of execution in the
same address space. Each thread receives its own stack but
they share global data, code, and heap.

Salman Shamil � � ï § CSE4509 Operating Systems 10 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Sharing Resources: Two Forms

Time sharing (one at a time) Space sharing (all a little)

Shared in time (I get to use the toolbox exclusively)
Shared in space (I get to pick the two screwdrivers I need)

Salman Shamil � � ï § CSE4509 Operating Systems 11 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Sharing Resources: Two Forms

Time sharing (one at a time) Space sharing (all a little)

Shared in time (I get to use the toolbox exclusively)
Shared in space (I get to pick the two screwdrivers I need)

Salman Shamil � � ï § CSE4509 Operating Systems 11 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Sharing Resources: Two Forms

Time sharing (one at a time) Space sharing (all a little)

Shared in time (I get to use the toolbox exclusively)
Shared in space (I get to pick the two screwdrivers I need)

Salman Shamil � � ï § CSE4509 Operating Systems 11 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Virtualizing the CPU

Goal: give each process the illusion of exclusive CPU access
Reality: the CPU is a shared resource among all processes

Different strategies for CPU, memory, and disk
CPU: time sharing, alternate between tasks
Memory: space sharing (more later)
Disk: space sharing (more later)

Salman Shamil � � ï § CSE4509 Operating Systems 12 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Virtualizing the CPU

Goal: give each process the illusion of exclusive CPU access
Reality: the CPU is a shared resource among all processes

Different strategies for CPU, memory, and disk
CPU: time sharing, alternate between tasks
Memory: space sharing (more later)
Disk: space sharing (more later)

Salman Shamil � � ï § CSE4509 Operating Systems 12 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

OS provides Process Abstraction

When the user executes a program, the OS creates a process.
OS time-shares CPU across multiple processes.
OS scheduler picks one of the executable processes to run.

Scheduler must keep a list of processes
Scheduler must keep metadata for policy

Salman Shamil � � ï § CSE4509 Operating Systems 13 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Difference between Policy and Mechanism

Policy: High-level decision. e.g., which process to run?
Mechanism: Low-level implementation. e.g., how to switch
from one process to another?

Distinction between policy and mechanism enables modularity. The
scheduling policy is independent of the context switch functionality.

Salman Shamil � � ï § CSE4509 Operating Systems 14 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Process Creation

OS allocates internal data structures
OS allocates an address space

Loads code, data from disk
Creates runtime stack, heap

OS opens basic files (STDIN, STDOUT, STDERR)
OS initializes CPU registers

Salman Shamil � � ï § CSE4509 Operating Systems 15 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Process States

Running :
Ready :
Blocked :
New :
Dead :

Salman Shamil � � ï § CSE4509 Operating Systems 16 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Process States

Running : this process is currently executing
Ready : this process is ready to execute (and will be scheduled
when the policy decides so)
Blocked : this process is suspended (e.g., waiting for some
action; OS will unblock it when that action is complete)
New : this process is being created (to ensure it will not be
scheduled)
Dead : this process has terminated (e.g., if the parent process
has not read out the return value yet)

Salman Shamil � � ï § CSE4509 Operating Systems 16 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Process State Transitions

Blocked

Running Ready
Deschedule

Schedule

Salman Shamil � � ï § CSE4509 Operating Systems 17 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Process State Transitions

Blocked

Running Ready

I/O: start I/O: done

Deschedule

Schedule

Salman Shamil � � ï § CSE4509 Operating Systems 17 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Example: Process State Transitions

Time Process 0 Process 1 Notes

1
2
3 P0 initiates I/O
4 P0 is blocked, P1 runs
5
6
7 I/O completes
8 P1 is complete/exits
9

Salman Shamil � � ï § CSE4509 Operating Systems 18 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Example: Process State Transitions

Time Process 0 Process 1 Notes

1 Running Ready
2 Running Ready
3 Running Ready P0 initiates I/O
4 Blocked Running P0 is blocked, P1 runs
5 Blocked Running
6 Blocked Running
7 Blocked Running I/O completes
8 Ready Running P1 is complete/exits
9 Running -

Salman Shamil � � ï § CSE4509 Operating Systems 18 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

OS Data Structures

OS maintains data structure (array/list) of active processes.
Information for each process is stored in a process control block
(on Linux, this is called task struct) that contains:

Process identifier (PID)
Process state (e.g., ready)
Pointer to parent process (cat /proc/self/status)
CPU context (if process is not running)
Pointer to address space (cat /proc/self/maps)
Pointer to list of open files (file descriptors, cat
/proc/self/fdinfo/*)

Salman Shamil � � ï § CSE4509 Operating Systems 19 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Distinction: Program / Process / Thread

Program: consists of an executable on disk. Contains all
information to boostrap a process
Process: a running instance of a program; has data section
and stack initialized
Thread: a process can have multiple threads in the same
address space (computing on the same data)

Salman Shamil � � ï § CSE4509 Operating Systems 20 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Processes vs Threads

A thread is a “lightweight process” (LWP)
A thread consists of a stack and register state (stack pointer,
code pointer, other registers).
Each process has one or more threads.

For example, two processes reading address 0xc0f3 may read
different values. While two threads in the same process will read the
same value.

Salman Shamil � � ï § CSE4509 Operating Systems 21 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Requesting OS Services

Processes can request services through the system call API
(Application Programming Interface).
System calls transfer execution to the OS (the OS generally
runs at higher privileges, enabling privileged operations).
Sensitive operations (e.g., hardware access, raw memory
access) require (execution) privileges.
Some system calls (e.g., read, write) may cause the process
to block, allowing the OS to schedule other processes.
Libraries (the libc) hide system call complexity, export OS
functionality as regular function calls.

Salman Shamil � � ï § CSE4509 Operating Systems 22 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Process API

The process API enables a process to control itself and other
processes through a set of system calls:

fork()
exec()
exit()
wait()
This is a small subset of the complex process API (more later)

Salman Shamil � � ï § CSE4509 Operating Systems 23 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Process API

The process API enables a process to control itself and other
processes through a set of system calls:

fork() creates a new child process (a copy of the process)
exec() executes a new program
exit() terminates the current process
wait() blocks the parent until the child terminates
This is a small subset of the complex process API (more later)

Salman Shamil � � ï § CSE4509 Operating Systems 23 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Process API: fork(), creating a new process

The OS allocates data structures for the new process (child).
The OS makes a copy of the caller’s (parent’s) address space.
The child is made ready and added to the list of processes.
fork() returns different values for parent/child.
Parent and child continue execution in their own separate
copy of their address space.

Salman Shamil � � ï § CSE4509 Operating Systems 24 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Process API: fork() demo!

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char* argv[]) {
printf("Hello, I'm PID %d (%d, %s)\n", (int)getpid(),

argc, argv[0]);
int pid = fork();
if (pid < 0) exit(-1); // fork failed
if (pid == 0) {

printf("o/ I'm PID %d\n", (int)getpid());
} else {

printf("\\o, my child is PID %d\n", pid);
}
return 0;

}

Salman Shamil � � ï § CSE4509 Operating Systems 25 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Process API: wait(), waiting for a child

Child processes are tied to their parent.
exit(int retval) takes a return value argument.
Parent can wait() for termination of child and read child’s
return value.

Salman Shamil � � ï § CSE4509 Operating Systems 26 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Process API: exec(), executing a (new) program

Always executing the same program is boring (we would need
one massive program with all functionality, e.g., emacs).
exec() replaces address space, loads new program from disk.
Program can pass command line arguments and environment.
Old address space/state is destroyed except for STDIN,
STDOUT, STDERR which are kept, allowing the parent to
redirect/rewire child’s output!

Salman Shamil � � ï § CSE4509 Operating Systems 27 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Why do we need fork() and exec()?

Assume a user wants to start a different program. For that, the
operating system needs to create a new process and create a new
address space to load the program.

Let’s use divide and conquer:

fork() creates a new process with a copy of this address space
exec() creates a new address space for a program

Salman Shamil � � ï § CSE4509 Operating Systems 28 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Why do we need fork() and exec()?

Assume a user wants to start a different program. For that, the
operating system needs to create a new process and create a new
address space to load the program.

Let’s use divide and conquer:

fork() creates a new process with a copy of this address space
exec() creates a new address space for a program

Salman Shamil � � ï § CSE4509 Operating Systems 28 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

fork() and exec() in action
int main(int argc, char *argv[])
{

int rc = fork();
if (rc < 0) {

// fork failed; exit
fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) {
// child: redirect standard output to a file
close(STDOUT_FILENO);
open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

// now exec "wc"...
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p4.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp(myargs[0], myargs); // runs word count

} else {
// parent goes down this path (original process)
int wc = wait(NULL);
assert(wc >= 0);

}
return 0;

}

Libraries to include. . .
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <assert.h>
#include <sys/wait.h>

Salman Shamil � � ï § CSE4509 Operating Systems 29 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

fork() and exec() in action
int main(int argc, char *argv[])
{

int rc = fork();
if (rc < 0) {

// fork failed; exit
fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) {
// child: redirect standard output to a file
close(STDOUT_FILENO);
open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

// now exec "wc"...
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p4.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp(myargs[0], myargs); // runs word count

} else {
// parent goes down this path (original process)
int wc = wait(NULL);
assert(wc >= 0);

}
return 0;

}

Libraries to include. . .
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <assert.h>
#include <sys/wait.h>

Salman Shamil � � ï § CSE4509 Operating Systems 29 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

A Tree of Processes

Each process has a parent process
A process can have many child process
Each process again can have child processes

3621 ? Ss _ tmux
3645 pts/2 Ss+ | _ -zsh
3673 pts/3 Ss+ | _ -zsh
4455 pts/4 Ss+ | _ -zsh

27124 pts/1 Ss+ | _ -zsh
21093 pts/5 Ss | _ -zsh
10589 pts/5 T | | _ vim 02-review.md
10882 pts/5 R+ | | _ ps -auxwf
10883 pts/5 S+ | | _ less
21264 pts/7 Ss | _ -zsh
1382 pts/7 T | | _ vim /home/gannimo/notes.txt

14368 pts/9 Ss | _ -zsh
29963 pts/9 S+ | _ python

Salman Shamil � � ï § CSE4509 Operating Systems 30 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Limited Direct Execution

A process executes instructions directly on the CPU.

Issues with running directly on hardware:

Process could do something illegal (read/write to memory that
does not belong to the process, access hardware directly)
Process could run forever (OS must stay in control)
Process could do something slow, e.g., I/O (OS may want to
switch to another process)

Solution: OS maintains some control with help from hardware. For
example, the OS maintains timers to intercept the execution at
regular intervals and the process may not execute privileged
instructions that access the hardware directly (user mode vs kernel
mode).

Salman Shamil � � ï § CSE4509 Operating Systems 31 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Limited Direct Execution

A process executes instructions directly on the CPU.

Issues with running directly on hardware:

Process could do something illegal (read/write to memory that
does not belong to the process, access hardware directly)
Process could run forever (OS must stay in control)
Process could do something slow, e.g., I/O (OS may want to
switch to another process)

Solution: OS maintains some control with help from hardware. For
example, the OS maintains timers to intercept the execution at
regular intervals and the process may not execute privileged
instructions that access the hardware directly (user mode vs kernel
mode).

Salman Shamil � � ï § CSE4509 Operating Systems 31 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Limited Direct Execution

A process executes instructions directly on the CPU.

Issues with running directly on hardware:

Process could do something illegal (read/write to memory that
does not belong to the process, access hardware directly)
Process could run forever (OS must stay in control)
Process could do something slow, e.g., I/O (OS may want to
switch to another process)

Solution: OS maintains some control with help from hardware. For
example, the OS maintains timers to intercept the execution at
regular intervals and the process may not execute privileged
instructions that access the hardware directly (user mode vs kernel
mode).

Salman Shamil � � ï § CSE4509 Operating Systems 31 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

Summary

Processes are a purely virtual concept
Separating policies and mechanisms enables modularity
OS is a server, reacts to requests from hardware and
processes
Processes are isolated from the OS/other processes

Processes have no direct access to devices
Processes run in virtual memory
OS provides functionality through system calls

A process consists of an address space, associated kernel state
(e.g., open files, network channels), and one or more threads of
execution

Salman Shamil � � ï § CSE4509 Operating Systems 32 / 32

https://s-shamil.github.io/
https://scholar.google.com/citations?user=snRL-sgAAAAJ&hl
https://www.linkedin.com/in/md-salman-shamil-980833150
https://github.com/s-shamil

