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Abstract. 3D hand poses are an under-explored modality for action
recognition. Poses are compact yet informative and can greatly benefit
applications with limited compute budgets. However, poses alone offer
an incomplete understanding of actions, as they cannot fully capture ob-
jects and environments with which humans interact. To efficiently model
hand-object interactions, we propose HandFormer, a novel multimodal
transformer. HandFormer combines 3D hand poses at a high temporal
resolution for fine-grained motion modeling with sparsely sampled RGB
frames for encoding scene semantics. Observing the unique characteris-
tics of hand poses, we temporally factorize hand modeling and represent
each joint by its short-term trajectories. This factorized pose represen-
tation combined with sparse RGB samples is remarkably efficient and
achieves high accuracy. Unimodal HandFormer with only hand poses
outperforms existing skeleton-based methods at 5× fewer FLOPs. With
RGB, we achieve new state-of-the-art performance on Assembly101 and
H2O with significant improvements in egocentric action recognition.

Keywords: Skeleton-based action recognition · 3D hand poses · Multi-
modal transformer

1 Introduction

The popularity of AR/VR headsets has driven interest in recognizing hand-
object interactions, particularly through egocentric [14,25] and multi-view cam-
eras [33, 51]. Such interactions are inherently fine-grained; recognizing them re-
quires distinguishing subtle motions and object state changes. State-of-the-art
methods for hand action recognition [23, 44, 47, 67] primarily rely on multi- or
single-view RGB streams, which are computationally heavy and unsuitable for
resource-constrained scenarios like AR/VR.

Motivated by advancements in lightweight hand pose estimation method-
ologies leveraging monochrome cameras [26, 27, 45], and the evolution of low-
dimensional sensor technologies [35, 41] such as accelerometers, MMG, EMG,
demonstrating real-time hand pose estimation, we advocate for the utilization
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Sparsely sampled video frames

Densely sampled 3D hand pose

Monochrome frames
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Wristband

Fig. 1: We sample 3D hand poses at a high temporal resolution (dense) for understand-
ing fine-grained hand motion and sparsely sample RGB frames to capture the scene
semantics. 3D hand poses can be acquired from low-resolution monochrome cameras
or low-dimensional sensors such as accelerometers, MMG, EEG, etc., facilitating an
efficient understanding of hand-object interactions. Video frames and hand poses in
the figure are from Assembly101 [51].

of 3D hand poses as an input modality for recognizing hand-object interactions.
Hand poses are a compact yet informative representation that captures the mo-
tions and nuances of hand movements.

Existing works on 3D pose-based action recognition have focused primar-
ily on full-body skeletons [20, 43, 66, 69]. Hand poses differ fundamentally from
full-body skeletons. In full-body recognition datasets [40, 53], the actions are
predominantly static from a global perspective. The relative changes in joint or
limb positions signify the action category, e.g . ‘hand waving.’ Conversely, hand
joints typically move together for many actions and lack a static joint as a global
reference [51] e.g . ‘put down toy.’ Full-body skeleton methods also benefit from
modeling long-range spatiotemporal dependencies between joints [43], while this
is less important for the hands as shown in Fig. 2 and in Sec. 3.

However, the 3D pose alone is insufficient to encode the action for hands.
Unlike the full-body case, where actions are self-contained by the sequence of
poses, the hands are often manipulating objects [33, 45, 51]. Hand pose is excel-
lent for identifying motions (verbs) but struggles with associated objects [51].
Therefore, supplementing pose data with visual context from images or videos is
crucial for full semantic understanding. However, as we noted earlier, using dense
RGB frames contradicts our objective and motivation for using hand poses.

This work introduces HandFormer, a novel and lightweight multimodal trans-
former that leverages dense 3D hand-poses complemented with sparsely sampled
RGB frames. To this end, we conceptualize an action as a sequence of short seg-
ments, which we refer to as micro-actions. Each micro-action comprises a dense
sequence of pose frames and a single RGB frame. As every hand joint moves in
close spatial proximity to each other, we opt to encode the pose sequence from a
Lagrangian view [49] and track each joint as an individual entity. The pose tra-
jectory and a single RGB frame are combined into micro-action features, which
are then temporally aggregated with a transformer to predict the action label.

Our contributions are: (i) We analyze the differences between hand pose
and full-body skeleton actions and design a novel pose sequence encoding that
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reflects hand-specific properties. (ii) We propose HandFormer that takes a se-
quence of dense 3D hand pose and sparse RGB frames as input in the form of
micro-actions. (iii) HandFormer achieves state-of-the-art action recognition per-
formance on H2O [33] and Assembly101 [51] while unimodal HandFormer with
only hand poses outperforms existing skeleton-based methods for verb recogni-
tion in Assembly101 incurring at least 5× fewer FLOPs. (iv) We experimentally
demonstrate how hand poses are especially crucial for multi-view and egocentric
action recognition.

2 Related Work

Video Action recognition. Video-based action recognition systems are well-
developed with sophisticated 3D-CNN [9, 23, 58, 68] or Video Transformer [2, 3,
42, 47] architectures. However, they all bear significant computational expense
for both feature extraction and motion handling, either explicitly in the form of
optical flow [9,32,56] or implicitly through the architecture [2,47]. Such designs
are well-suited for high-facility research and certain cloud-based applications but
are not suitable for integration into lightweight systems. To this end, efficiency
in video understanding has been an active topic of research where the main
focus has been model efficiency i.e., reducing expensive 3D operations [22, 39,
59,68], quadratic complexity of attention [31,42,47] and dropping tokens [4,21].
However, due to the high cost of using densly-sampled RGB frames, they can only
offer limited temporal resolution, hindering fine-grained action understanding.
As such, we propose to complement 3D hand poses with only sparsely-sampled
RGB frames for developing a lightweight video understanding system.

Skeleton-based Action Recognition. Skeleton-based action recognition has
been approached with hand-crafted features [61,63], sequence models like RNNs
and LSTMs [19,70], and CNN-based methods that either employ temporal con-
volution on the pose sequence [57] or transform the skeleton data into pseudo-
images to be processed with 2D or 3D convolutional networks [7,20,30]. Recent
advancements primarily come from GNN-based methods that utilize the skeletal
data’s graph structure for constructing spatio-temporal graphs and performing
graph convolutions [69,71]. These methods often model functional links between
joints that go beyond skeletal connectivity [38, 55] or aim to increase the spa-
tiotemporal receptive field [43]. Self-attention and transformer-based methods
have also been proposed in [48, 66, 72]. Most existing methods are tailored for
datasets that involve full-body poses, while our work is dedicated to 3D hand
pose data, focusing on the unique motion characteristics of hand skeletons. Al-
though there are some methods that work with hand pose, such as [29, 36, 50],
they are primarily designed for gesture recognition, which does not require ex-
plicit temporal modeling.

Fusing RGB with Skeleton. Pose or skeletal data can be used for cropping
image patches for body parts [12], weighting RGB patches around the regions
of interest [5, 6], or pooling deep CNN features [1, 8]. Projecting into common
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Fig. 2: Comparing skeletal changes in full-body actions from NTU RGB+D 120 [40]
(left) and hand actions from Assembly101 [52] (right). Two pose frames at interval T
are shown. Jj,t indicates the 3D coordinate of joint j at timestep t, and < Jx, Jy >
is the correlation between two such joints. Modeling the correlation between spatio-
temporally distant joints can be informative in full-body pose but is unable to provide
a useful action cue in hand pose.

embedding space is done in [16], which enables pose distillation in [15]. Multi-
stream architectures are also designed to employ separate paths for RGB and
skeleton data with lateral connections between the streams [37,64]. RGBPoseC-
onv3D [20] is a two-stream architecture that proposes to use 3D CNNs for both
RGB and pose. Similar to skeleton-based action recognition, these multi-modal
approaches combining skeleton and RGB data primarily focus on full-body poses.
Some approaches simultaneously perform both hand pose estimation and action
recognition, using pose data to supervise the training process [13,65]. However, it
is important to note that the task of pose estimation is extremely low-level when
compared to action recognition, which deals with high-level semantics. Actions
can often be inferred even when the estimated poses are not highly precise [45].

3 Full-body Skeleton vs. Hand

Existing skeleton-based action recognition datasets primarily consist of full-body
poses where actions feature significant changes in limb positions relative to other
body parts over time, strongly correlating with the action category. Capturing
these changes can be achieved through long-range spatiotemporal modeling using
graph convolutions with large receptive fields [43] or using self-attention [66].
Conversely, hand-pose actions show diverse movement patterns, as hands can
move in arbitrary directions, often without significant changes in articulation. We
also analyze pose sequences from NTU RGB+D 120 [40] and Assembly101 [51],
calculating the distance covered by each joint and identifying the least and most
active joints. We observe that, for full-body poses, these two representative joints
show a significant difference in the distance covered, while for hand poses, they
only depict a subtle distinction. The Pearson correlation coefficient is 0.93 for
hand poses (indicating highly coupled joints) and 0.33 for full-body poses. Please
see our Supplementary for the details of these computations and comparisons.

An example showing the difference between body and hand pose is provided
in Fig. 2, where we depict two frames separated by a time interval of T frames.
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Fig. 3: Overall architecture of HandFormer. An action segment is divided into K
micro-actions {M1,M2 . . .MK}. Each micro-action comprises a dense sequence of pose
frames and a single RGB frame. The frame encoder F and the trajectory encoder T
encode the single RGB frame and the dense poses, respectively, after which it is passed
through a Multimodal Tokenizer. The modality-mixed PoseRGB tokens are then fed
into a Temporal Transformer. [CLS] token represents the learnable action class token.
Dotted modules are optional and only required when RGB modality is used.

For the full body skeleton, the head joint JH remains static, while the right
hand joint JF moves upward. Conversely, in the hand pose, all the joints move,
including the wrist joint JW and index fingertip JI . The spatiotemporal cross-
correlation between the head joint in the first frame and the hand joint in the last
frame (< JH,0, JF,T >) is an important action cue, capturing the relative struc-
tural change. On the contrary, modeling a similar correlation between the wrist
and a fingertip for hand skeleton (< JW,0, JI,T >) does not provide a stronger cue
than the wrist movement itself. To avoid such redundant spatiotemporally dis-
tant correlations, we propose dividing the hand pose sequence into micro-action
blocks of fixed temporal length. This formulation allows for encoding short-term
movements while enabling parameter sharing.

Moreover, full-skeletal motion is a dominant feature in hand pose sequences,
differentiating it from whole body human poses. While the location and orienta-
tion of the human body can be trivial for most action classes, this is not the case
for the hands. The hands do not conform to any particular 6D pose, and more
significantly, they frequently and unpredictably alter their 6D pose over time. A
comprehensive analysis of this phenomenon is provided in our Supplementary.
In this regard, we explicitly consider the global 6D poses of the hands during
micro-action-based pose encoding.

4 HandFormer

Fig. 3 illustrates our proposed HandFormer, which consists of a sequence of
micro-action blocks, a novel trajectory encoder, and a temporal aggregation
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module. The design of our HandFormer allows us to easily incorporate semantic
context by sampling single RGB frames from certain micro-actions.

4.1 Micro-actions

Given an action segment containing T frames sampled at a certain fps, the input
to our model comprises — i) a dense sequence of 3D hand poses, represented as
S = {P1, P2, . . . , PT }, where Pt = {P left

t , P right
t } ∈ R2×J×3 signifying the 3D co-

ordinates of J keypoints in the left and right hands, respectively, and ii) a sparse
set of RGB frames sampled at intervals ∆f , denoted as V = {I1, I1+∆f , . . . , ITr

},
where It ∈ RH×W×3 are framewise RGB features and Tr =

⌊
T −1
∆f

⌋
×∆f .

We factorize the raw input into a sequence of K micro-action blocks of length
N frames, obtained by shifting the window across the action segment with a
stride of R frames. Each block consists of two components — the initial appear-
ance derived from the first RGB frame within the block and the hand motion
characterized by the dense sequence of N pose frames. To obtain a fixed length
input containing T ′ = (K−1)×R+N pose frames, we perform linear interpola-
tion for each joint along the temporal axis, transforming pose sequence S having
T frames to S′ = {P ′

1, P
′
2, . . . , P

′
T ′} having T ′ frames, where P ′

t ∈ R2×J×3. Thus,
we represent the input as a sequence of micro-actions M = {M1,M2, . . . ,MK},
derived from V and S′ through the following equations:

Mk =
[
MRGB

k ,MPose
k

]
=

[
Ih(k), {P ′

g(k)+i}
N−1
i=0

]
, (1)

where g(k) = (k − 1)×R+ 1 denotes the first pose frame in k-th Micro-action,
and h(k) determines the index of the nearest available RGB frame.

The dense pose sequence in a micro-action captures fine-grained hand motion
crucial for recognizing verbs, whereas a single RGB frame provides semantic
context for recognizing objects. To extract features from micro-actions, we use
a frame encoder F and a trajectory encoder T , which operate on RGB frames
and pose sequences, respectively. Consequently, the RGB and pose features for
the kth micro-action is given by[

fRGB
k , fPose

k

]
=

[
F (MRGB

k ), T (MPose
k )

]
, (2)

where fRGB
k , fpose

k ∈ Rd, where d denotes the common dimensionality of both
RGB and pose embedding space.

4.2 Trajectory Encoder

To encode dense hand-pose sequences within micro-actions, we devise a trajectory-
based pose encoder, illustrated in Fig. 4. Each joint is represented by its trajec-
tory of dimension 3 × N , encapsulating the sequence of 3D coordinates across
the N pose frames of a micro-action. This yields 2× J feature vectors for the J
joints of two hands. Each joint’s trajectory is passed through a TCN [34], whose
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Fig. 4: Our Trajectory Encoder T , which operates on micro-actions, derives tokens
with trajectory-based features and performs self-attention to encode the pose sequence
into a feature vector. The Single-Joint TCN is a Temporal Convolutional Network [34]
that processes the trajectories of all the joints individually with shared parameters
across all joints. Wrist-TCN takes an action-wide sequence of wrist location and hand
orientation (6D pose) to produce a global reference token.

parameters are shared for all joints. This produces 2 × J Local Trajectory To-
kens. Additionally, the full-skeletal motion of the hand during the entire action
is used as a reference through an additional token named Global Wrist Token.
This token is generated by a separate TCN operating on the sequence of 6D
poses of hands, indicating wrist location and hand orientation. Subsequently, a
self-attention layer is applied to these trajectory tokens, preserving the temporal
dimension for subsequent stages. This iterative process culminates in spatiotem-
poral average pooling, summarizing the hand motion of the micro-action.

4.3 Multimodal Tokenizer

In this section, we discuss incorporating sparsely sampled RGB frames into our
HandFormer to better capture the scene semantics. A single frame is sampled
from each micro-action, followed by generating an extended crop (1.25×) around
the hands. While the full image provides the overall scene context, the crop
focuses specifically on hand-object interaction regions [10]. Features for both are
separately generated using a pre-existing image encoder and then aggregated to
enrich the hand-object interaction feature with scene context. The hand-object
ROI crop can be obtained using an off-the-shelf HOI detector [54] or by using
the corresponding hand pose projections.

Our multimodal tokenizer receives the frame feature and trajectory encoding
of a micro-action as input Fig. 3, and performs multi-modal feature interaction
to enhance their features for better RGB and pose tokens. This involves con-
catenating the frame features and the pose trajectories, projecting them into a
shared PoseRGB feature space using an MLP, and then splitting the PoseRGB
feature into two parts, which are added to the original RGB and Pose features.
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4.4 Temporal Transformer

The multimodal tokenizer provides RGB and pose tokens for each micro-action.
Since an action segment consists of a sequence of micro-actions, these micro-
action tokens are aggregated over time via a temporal transformer. A video V,
divided into K micro-actions can be represented by two sets of tokens {f̂RGB

k }Kk=1

and {f̂Pose
k }Kk=1, respectively, produced by the multimodal tokenizer. These 2×K

tokens of dimension d form the input sequence of the temporal transformer. Po-
sitional encoding and modality embedding are added to each input token to
indicate the temporal location and source modality. We use the fixed sine/cosine
positional encoding [60], where we assign the same position to two tokens com-
ing from the same micro-action. Modality embeddings are learned and shared
across the tokens from the same modality (RGB or Pose). Following standard
practice [17,18], we prepend an additional learnable class token [CLS] ∈ Rd, the
output of which is then used for classifying actions.

4.5 Learning Objectives

HandFormer is trained end-to-end for action recognition, supervised via a cross-
entropy loss: Lcls = −ai log âi, where ai represents the ground truth action label
for the ith sample, and âi denotes the predicted action category by HandFormer.
The pose and RGB modalities, serving as inputs, provide complementary infor-
mation regarding a scene, capturing motion and interacting objects, respectively.
To effectively utilize this information, we employ explicit verb and object super-
vision (Lverb, Lobj) through two additional learnable class tokens. Given that
pose strongly correlates with verb class, the verb class token selectively attends
to pose encodings. Similarly, as objects are reliably identifiable from RGB frames
alone, the object class token exclusively attends to frame features.

Feature Anticipation Loss. Hand pose sequence captures the primary sources
of state changes during hand-object interactions. We posit that the visual state
from an initial RGB frame, in combination with the subsequent hand pose se-
quence, is indicative of the visual state that results from the completion of the
sequence. Therefore, given an RGB feature and the corresponding pose features
from a micro-action, we force our model to anticipate the RGB feature for the
next micro-action by minimizing an L1 feature loss. This loss, inspired by exist-
ing efforts [24,62], quantifies the difference between the anticipated image feature
and the true feature extracted from a frozen image encoder. Formally,

Lant =

K−1∑
k=1

∥∥Φant(f
PoseRGB
k )− fRGB

k+1

∥∥
1

(3)

where Φant denotes a linear projection layer.
Hence, the total loss is:

L = Lcls + λ1Lverb + λ2Lobj + λ3Lant (4)

where λ1, λ2, λ3 are hyperparameters used to balance the four losses.
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5 Experiments

Datasets. We conduct experiments on two publicly available hand-object inter-
action datasets with multiple views, Assembly101 [51] and H2O [33]. Assem-
bly101 [51] is a large-scale multiview dataset that features videos of procedural
activities for assembling and disassembling 101 take-apart toy vehicles. This
dataset has 1380 fine-grained actions resulting from a combination of 24 verbs
and 90 objects. Additionally, 3D hand pose estimations are provided. The dataset
consists of 12 temporally synchronized views — 8 static and 4 egocentric. The
egocentric views exhibit low-resolution monochrome images, making it challeng-
ing even for human eyes to discern objects in view. As a result, we opt for fixed
views in our RGB modality. H2O [33] features four participants performing 36
actions that involve 8 different objects and 11 verbs. 3D hand poses with 21 key
points per hand are provided, along with 6D object poses, camera poses, object
meshes, and scene point clouds. It consists of 5 temporally synchronized RGB
views — 4 fixed and 1 egocentric. In our work, we use hand poses and RGB
frames from the egocentric view only.

Implementation Details. Similar to [66], our pose input consists of 120 frames
by setting T ′ = 120. The number of frames per micro-action (N) is 15. For
multimodal experiments, we set the window stride R = N and take K = 8
non-overlapping micro-actions, which allows us to sample 8 RGB frames for
each video following [51]. However, we allow a 50% overlap between consecutive
micro-actions for pose-only versions. Unless otherwise specified, we utilize the
pre-trained ViT-g/14 and ViT-L/14 models from DINOv2 [46] followed by a
linear layer without any fine-tuning as the frame encoder F for Assembly101 [51]
and H2O [33], respectively. We also evaluate a lightweight alternative by fine-
tuning ResNet-50 [28] in the Supplementary. Each model is trained for 50 epochs
using SGD with momentum 0.9, a batch size of 32, a learning rate of 0.025, and
step LR decay with a factor of 0.1 at epochs {25, 40}. During training, the frame
encoder F is kept frozen except for the final linear layer.

Model Variants. We propose several variants of our model by adjusting the
width d and the number of layers Tn of the transformer to strike a balance be-
tween efficiency and accuracy. Our default HandFormer, denoted HandFormer-B,
has parameters (d, Tn) = (256, 2). We introduce a larger variant, HandFormer-L,
with (d, Tn) = (512, 4). We also explore different configurations for the number
of input joints J per hand. Unless otherwise mentioned, we utilize all 21 joints
per hand along with the base model denoted as HandFormer-B/21 while offer-
ing a highly efficient option utilizing only 6 joints per hand (5 fingertips and the
wrist) termed HandFormer-B/6.

5.1 Comparison with State-of-the-Art

To evaluate the effectiveness of our proposed architecture, we compare it against
several baselines. For pose-only comparisons, we choose a graph-based network
MS-G3D [43] and an attention-based method ISTA-Net [66] — the two best
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Method Pose RGB Assembly101 H2O
Action Verb Object Action

MS-G3D [43] ✓ ✗ 28.78 63.46 37.26 50.83
ISTA-Net [66] ✓ ✗ 28.14 62.70 36.77 89.09
SlowFast [23] ✗ ✓ - - - 77.69
TSM [39] ✗ ✓ 35.27 58.27 47.45 -
Cho et al . [13] ✗ ✓ - - - 90.90
RGBPoseConv3D [20] ✓ ✓ 33.61 61.99 42.90 83.47
MS-G3D + TSM ✓ ✓ 39.74 65.12 51.12 -

HandFormer-B/21
✓ ✗ 28.80 65.33 36.28 57.44
✗ ✓ 32.07 55.61 44.89 84.71
✓ ✓ 41.06 69.23 51.17 93.39

Table 1: Quantitative comparison with state-of-the-art methods on Assem-
bly101 [51] and H2O [33]. For H2O, 6D object pose is used by ISTA-Net during training
and inference and by Cho et al . during training. ‘MS-G3D + TSM’ denotes a late fu-
sion of the corresponding unimodal architectures.

performing skeleton-based methods on Assembly101 [51], as reported by [66].
We also employ video baselines TSM [39] and SlowFast [23], which emphasize
efficiency and high temporal resolution, respectively. Additionally, we include
Cho et al . [13], the state-of-the-art for the H2O dataset. For Assembly101, we
replicate the results of the aforementioned methods using RGB frames from
view 4 of the dataset, while results on H2O are acquired from the respective
papers. Furthermore, on both datasets, we train and test RGBPoseConv3D [20],
state-of-the-art in multi-modal action recognition with skeleton and RGB data.

We evaluate three variants of our method by controlling the input modalities.
As shown in Tab. 1, our unimodal pose-only model excels in verb recognition on
Assembly101. In contrast, RGB-based methods benefit from object appearance
and usually perform well in terms of action accuracy, which can be attributed
to their high object recognition performance. In this context, the accuracy of
ISTA-Net on H2O is not directly comparable to our method, as they also use
the 6D object poses, while we only use hand poses as input. RGBPoseConv3D
struggles to achieve satisfactory performance, particularly on Assembly101, sug-
gesting that generalizing to hand poses is non-trivial for skeleton-based methods.
Therefore, we combine two best-performing unimodal methods with late fusion
(MS-G3D + TSM) to create a stronger baseline. Our model even outperforms
this, indicating the effectiveness of our proposed multimodal fusion.

5.2 Skeleton-based Action Recognition for Hands

The compositional nature of action classes in hand-object interaction videos al-
lows us to break down the action into a verb and an object. Recognizing such
actions from 3D hand poses is an ill-posed problem, as the hand skeletons lack
explicit information about the interacting objects, which are also a part of the ac-
tion semantics. However, as the pose data completely captures the hand motion
information, it can be reliably used for verb recognition. Therefore, we evaluate
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a pose-only version of our method on the verb recognition task and compare the
performance and efficiency metrics with other state-of-the-art skeleton-based
methods in Fig. 5. Our method uses significantly fewer GFLOPs due to our
spatiotemporal factorization using micro-actions. With J = 21, all our Hand-
Former variants outperform existing methods, while J = 6 variant is extremely
efficient with comparable accuracy. HandFormer-H/21 is a combined variant of
HandFormer-B and HandFormer-L with J = 21, which is our best-performing
model, improving over MS-G3D by 2.04% while maintaining comparable FLOPs.

5.3 How many RGB frames are required?

In our model, the pose modality maintains a high temporal resolution to capture
fine-grained hand movements, resulting in good verb recognition performance.
On the contrary, RGB frames are primarily required to introduce semantic con-
text beneficial for object recognition and do not necessitate a high temporal res-
olution like hand movements. The design of our model allows us to sample only
a few RGB frames (as low as one) but still perform competitively at a reduced
computational cost. Fig. 6 shows the impact of using more RGB frames for As-
sembly101 [51]. Using only one RGB frame in HandFormer (35.46) outperforms
the video model TSM (35.27), as shown in Tab. 1. This performance gain stems
primarily from a significant improvement in object accuracy, with only a slight
enhancement in verb accuracy. However, including more RGB frames shows a
diminishing return, which is unsurprising as additional frames are expected to
provide redundant information. These results are obtained with a simplified ver-
sion of our model by setting L = Lcls and bypassing the multimodal tokenizer.

5.4 Are 3D hand poses an efficient alternative for multi-view?

Multi-view action recognition, while benefitting from precise hand-movement
information in 3D space, processing all views with video models is expensive
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Views Action Verb Object

Single View 35.27 58.27 47.45
Single View + Egocentric 37.75 61.80 49.43
Two Views 41.96 65.22 53.26
All (8) Views 47.51 70.99 57.73

Single View + Pose 41.06 69.23 51.17

Table 2: Multi-view Action
Recognition on Assembly101 [51].
HandFormer with ‘Single View+Pose’
has better performance than ‘Single
View+Egocentric’. However, verb
performance is comparable to using
all (8) RGB views.

Method Trained on Tested on Assembly101 [51]
Action Verb Object

TSM [39]
v4 + ego v4 + ego 37.75 61.80 49.43
v4 + ego v1 + ego 35.27 59.53 47.72
v1 + ego v1 + ego 36.21 60.78 48.52

Our Method v4 + Pose v4 + Pose 41.06 69.23 51.17
v4 + Pose v1 + Pose 38.43 67.86 48.32

Table 3: Cross-view performance of
HandFormer shows its generalization ca-
pability to unseen view 1, outperforming the
video baseline which is trained on view 1
directly. Egocentric views are the source of
hand poses in Assembly101 and, therefore,
are included in the video models.

and highly redundant. In Tab. 2, we demonstrate that combining 3D hand pose
with a single RGB view (view 4 ) achieves comparable performance to multi-view
action recognition on Assembly101 [51]. Specifically, our action recognition per-
formance (‘Single View + RGB’) matches the fusion of the two most informative
views — view 1 and view 4. Notably, our verb recognition accuracy is similar
to the combination of all 8 RGB views while using 3× fewer FLOPs (see Sup-
plementary). Additionally, using hand pose in combination with an RGB view
(‘Single View + RGB’) outperforms directly using the egocentric videos (‘Sin-
gle View + Egocentric’) from which the hand poses are derived. While fusing
multiple RGB views improves accuracy by ensembling multiple complementary
predictions, the computational overhead also increases significantly. In contrast,
our model processes hand pose and single-view RGB frames, enhancing efficiency
by leveraging the less redundant and low-dimensional pose data.
Cross-view Generalization. 3D hand pose offers a unique opportunity for
cross-view generalization because of its universality across different viewpoints.
To evaluate the effectiveness of our method for unseen views, we train our model
with frame-wise RGB features from view 4 and test it on view 1. As a baseline
video model, we train TSM [39] on both RGB views separately. As our method
includes a 3D hand pose, which is obtained from egocentric views, we include the
egocentric videos in the TSM baselines for a fair comparison. As seen from Tab. 3,
our method, trained on view 4, generalizes well on unseen view 1, outperforming
the TSM model that was directly trained on view 1.

5.5 Egocentric Action Recognition

Recognizing actions in egocentric videos is challenging due to factors such as
camera motion and the occlusion of interacting objects by hand. Additionally,
in the case of Assembly101 [51], the egocentric cameras are similar to Ocu-
lus Quest VR headsets, which provide monochrome low-resolution frames. As a
result, action recognition performance is significantly lower compared to fixed
RGB views, as demonstrated in [51]. We address this challenging scenario with
our proposed multi-modal architecture and achieve state-of-the-art performance
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Method Action Verb Object

TSM egocentric (fuse 4 views) 33.80 59.00 46.50

Egocentric (e3 ) + Pose 36.07 65.52 45.82
Egocentric (e4 ) + Pose 35.56 65.79 45.20
Egocentric (e3+e4 ) + Pose 38.05 66.32 47.86

Table 4: Egocentric action recognition in
Assembly101 [51]. TSM features from [51] are
used as RGB frame features.

#Joints Global Verb
Reference Accuracy (%)

21 ✗ 64.17
21 ✓ 64.90
11 ✓ 64.77
6 ✓ 63.70

Table 5: Keypoint ablation
for verb recognition in Assem-
bly101 [51].

in egocentric action recognition on Assembly101. For this experiment, we used
frame-wise TSM features provided by [51]. As depicted in Tab. 4, our model, us-
ing a single egocentric view (e3 or e4 ) outperforms the fusion of four egocentric
views as reported in [51]. Moreover, fusing e3 and e4 significantly enhances our
model, resulting in a 4.25% increase in action accuracy over the baseline.

5.6 Ablation Studies

Keypoints. Not all joints of the hands are equally informative for understand-
ing hand actions. For instance, fingertips exhibit greater mobility compared to
the inner joints. Moreover, from an egocentric viewpoint, certain joints are more
prone to self-occlusion than others. In Tab. 5, we present the impacts of incor-
porating varying numbers of joints on verb recognition within the Assembly101
dataset [51]. For the case of 6 joints, we consider only the wrist joint along with
the five fingertips, and to expand to 11 joints, we additionally incorporate all
the joints along the index finger and thumb, which are least affected by self-
occlusion. We also show the effect of including Global Wrist Token, which acts
as a reference to the global motion of the hands while encoding micro-actions.

Micro-action length. As the resized input comprises a set number of pose
frames, enlarging the window size for a micro-action will lead to a decrease in
the number of micro-actions to aggregate, and conversely. In Tab. 6, we vary the
micro-action length for verb recognition in the Assembly101 dataset [51] using
6 joints per hand as input, i.e. fingertips and wrist joint. The input pose clip
is temporally resized to T ′ = 120 before breaking into micro-actions. Lengths 1
and 120 represent two extreme versions with frame-based and trajectory-based
encoding, respectively, while the others conform to our micro-action-based for-
mulation.

#Frames 1 15 30 60 120

Verb 59.12 63.70 63.68 63.51 62.29Accuracy(%)

Table 6: Micro-action length ablation
for verb recognition in Assembly101 [51].

Temp. Agg. TCN LSTM Transformer

Verb 62.95 63.34 63.70Accuracy(%)

Table 7: Ablating unimodal tem-
poral aggregation choices for verb
recognition in Assembly101 [51].
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Multimodal Reconstruction Verb & Object Action Accuracy (%)
Tokenizer Loss Loss Assembly101 H2O

✗ ✗ ✗ 38.98 85.95
✓ ✗ ✗ 40.19 88.84
✓ ✓ ✗ 40.24 89.26
✗ ✗ ✓ 40.56 90.50
✓ ✓ ✓ 41.06 93.39

Table 8: Ablating tokenization and different losses for action recognition on Assem-
bly101 [51] and H2O [33].

Temporal Aggregation. After extracting features for micro-actions, aggrega-
tion for action recognition can be done with any sequence model. In Tab. 7,
we evaluate the effectiveness of different temporal aggregation methods for verb
recognition in the Assembly101 dataset [51]. Here, we use 6 joints per hand as
input, i.e. fingertips and wrist joint.

Loss components. To assess the individual contributions of different compo-
nents, we begin with a basic configuration. We then systematically introduce
each element to understand its impact on the overall performance as observed
in Tab. 8. Incorporating modality interaction between RGB and pose at the
micro-action level through a multimodal tokenizer enhances action accuracy.
The introduction of auxiliary losses also has a positive impact, resulting in an
overall improvement of 2.08% for Assembly101 [51] and 7.45% for H2O [33].

6 Conclusion

With the growing interest in AR/VR and wearables, hand pose estimation has
rapidly advanced, leading to the development of dedicated hardware independent
of vision. As such, hand poses hold promise as a compact, domain-independent,
rich modality to complement computer vision in the near future. To address the
under-explored domain of using 3D hand poses as a modality for hand-object
interaction recognition, we highlight the fundamental differences between hand
poses and full-body human skeletons. We introduce HandFormer, a novel multi-
modal transformer that leverages dense sequences of 3D hand poses with sparsely
sampled RGB frames to achieve state-of-the-art action recognition performance.
Our model also reduces computational requirements, offering immediate signifi-
cance across various low-resource applications in mobile devices.
Limitations. Our method relies on the availability of hand poses, which, if
extracted from the visual modality with pose estimation tools [26, 27], can en-
counter out-of-view scenarios and produce noisy poses. Although our experi-
ments show that such estimated poses can still achieve good accuracy, further
research can be done to explicitly address this phenomenon. We also assume
that uniform sampling of RGB frames from each micro-action should provide us
with good representations for understanding the semantic context, which is not
true as all frames are not equally important in action. In such a case, adaptive
frame sampling methods can be employed which we leave for future work.
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Appendix

A Statistical Analysis: Full-body Skeleton vs. Hand

This section serves as an extension of Sec. 3 to statistically analyze the difference
between hand poses and full-body poses. Action recognition datasets [40, 53],
which primarily focus on full-body actions, often include actions involving par-
tial body movements. These actions exhibit limited motion when viewed with
respect to the entire skeleton, resulting in one or more relatively static joints.
The change in the locations of moving joints with respect to such static joints
can provide useful action cues. However, hand motions typically feature no such
static reference points, as all the hand joints move together most of the time,
making small changes in articulation to perform an action. To illustrate this dif-
ference, we randomly sample 1000 pose sequences from NTU RGB+D 120 [40]
(full-body) and Assembly101 [51] (hands). We take the distance covered be-
tween two consecutive frames for each joint to form a distance array for the

(a) NTU RGB+D 120

(b) Assembly101
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Fig. 7: With a random pool of 1000 sequences, we observe that the least active joints
can be viewed as static reference points, showing minimal movement in NTU RGB+D
120. In contrast, Assembly101 exhibits subtler distinctions between the most active
and the least active joints. The Pearson correlation coefficient (r) between the distance
values for these two joints yields a high value (0.93) for Assembly101, while r = 0.33
for NTU RGB+D 120. These results suggest strong coupling among hand joints during
motion, emphasizing the dominance of full-skeleton motion in hand poses. Our method
leverages this understanding, balancing long-term motion patterns and short-term ar-
ticulation changes by factorization.
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corresponding joint j in a given sequence, which is determined by:

dj(t) =
∥∥Pj(t)− Pj(t− 1)

∥∥ (5)

Here, dj(t) is the distance covered by joint j at frame t in reference to the
previous frame, Pj(t) and Pj(t − 1) are the 3D pose coordinates for joint j at
time t and t−1, respectively. ∥.∥ represents the Euclidean distance. Based on the
sum of distances Dj for each joint j, we define the least active joint (static) and
the most active joint (dynamic) for a particular sequence using the following
equations:

Dj =

T∑
t=1

dj(t)

jsta = argmin
j

Dj jdyn = argmax
j

Dj

(6)

For all the sampled 1000 sequences, we take the temporal sequences {djsta(t)}Tt=1

and {djdyn
(t)}Tt=1, normalize the distance values using the diameter of the cor-

responding skeleton, and plot the sequences separately in Fig. 7. As can be
observed, compared to the distances covered by the most active joints in NTU
RGB+D 120, the least active joints show significantly lower movement, effec-
tively serving as the static reference points. On the other hand, the distinction
in distance arrays between the most and the least active joints in Assembly101 is
less pronounced. In addition, we calculated the Pearson correlation coefficient,
denoted as r, between {djsta(t)}Tt=1 and {djdyn

(t)}Tt=1 for all Assembly101 se-
quences, resulting in a value of 0.93. Conversely, for NTU RGB+D 120, the cor-
responding correlation coefficient is 0.33. This suggests strong coupling among
hand joints during motion, and full-skeleton movement is more dominant in
hand poses compared to full-body poses. Consequently, modeling dependencies
between spatiotemporally distant joints is less effective for the highly dynamic
hand motion (also discussed in Sec. 3). Therefore, by considering both long-term
motion patterns and short-term articulation changes, our method facilitates ef-
ficient spatiotemporal factorization through micro-actions (Sec. 4.1). We also
incorporate the full-skeletal motion from the entire action during micro-action
encoding, using a global wrist token as a reference (Sec. 4.2).

B 2D vs. 3D Pose for Hand Actions

For skeleton-based action recognition, PoseConv3D [20] proposes using 2D poses
as input, arguing that the quality of pose estimation is superior in 2D. By con-
structing 3D heatmap volumes from 2D poses and employing a simple 3D-CNN,
they surpass state-of-the-art GCN-based methods that rely on 3D poses. In-
corporating CNN-based modeling for the pose stream also facilitates seamless
integration with the RGB modality. In this section, we assess this proposition
specifically within the context of hand skeletons.
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(a) NTU RGB+D 120 [40].

(b) Assembly101 [51].

Fig. 8: Heatmaps for joints and limbs for (a) full-body poses and (b) hand poses.

Fig. 8 illustrates sample heatmaps from NTU RGB+D 120 [40] and Assem-
bly101 [51]. Keypoints in full-body human poses are often prominently situ-
ated, with minimal self-occlusion, and the subject is typically centered within
the frame. As viewed in Fig. 8a, reducing pose dimensions to 2D does not sig-
nificantly compromise detail; rather, it enhances input reliability by simplify-
ing the pose estimation problem. However, this advantage diminishes when ap-
plied to hand poses. Hand poses present unique challenges, such as frequent
self-occlusion and closer proximity of the keypoints, which are exacerbated by
reducing the dimension to 2D. To empirically analyze this phenomenon, we eval-
uate HandFormer-B/6 with 2D and 3D poses for recognizing verbs in Assem-



18 Md Salman Shamil et al.

Method Input Pose Verb Accuracy (%)

PoseConv3D [20] 2D 46.71

HandFormer-B/6 2D 58.92
HandFormer-B/6 3D 63.70

Table 9: Impact of using 2D vs. 3D poses as input for skeleton-based action
recognition in hands. Experiments are done for verb recognition on Assembly101 [51].

bly101 [51] and report in Tab. 9. This analysis reveals about 5% difference in
favor of the 3D input. Furthermore, PoseConv3D [20] introduces a CNN-based
approach with 2D keypoints, which directly utilizes heatmaps from the pose
estimator or generates Gaussian heatmaps from the 2D coordinates. However,
feeding heatmaps to the model can diminish the clarity of keypoints, partic-
ularly when they are in close proximity, as is often the case with hand poses.
Hence, PoseConv3D [20] performs poorly in recognizing hand actions, as evident
in Tab. 9.

In summary, although skeleton-based methods represent a broader field for
action recognition with poses, they often lack the necessary adaptation for di-
rectly addressing hand-specific actions. This demands dedicated research on
hand poses for hand-object interaction understanding.

C Efficient Alternative for Frame Encoder

Except for our experiments on Assembly101 [51] with monochrome egocentric
videos (Sec. 5.5) , all our multimodal results are obtained using DINOv2 [46]
features extracted from the input RGB frames. This approach enables us to
assess the effectiveness of image-based foundation models in videos, leveraging
all-purpose features from RGB frames, also achieving strong performance in
cross-view generalization (Sec. 5.4). While using such frozen encoders for fea-
ture extraction can expedite training and mitigate the need for domain-specific
modeling, the inference can be compute-heavy due to the large ViT backbones of
foundation models. To alleviate this, we propose a pretraining scheme that allows

Method Variant Frame Encoder Action Verb Object

RGB-only ViT-g/14 32.07 55.61 44.89
ResNet50 35.09 56.59 48.54

Pose+RGB ViT-g/14 41.06 69.23 51.17
ResNet50 41.99 69.28 51.96

Table 10: Comparison of different frame encoder options on Assembly101 [51].
Frame-wise TSM features from pretrained ResNet50 perform better compared to all-
purpose features generated by DINOv2 with a ViT-g/14 backbone. RGB-only variant
greatly benefits from the pretraining as it works with domain-specific features for action
recognition. However, incorporating complementary pose modality reduces the gain
from pretraining.
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us to use a ResNet50 [28] backbone to extract image features, thereby reducing
inference time. Specifically, we first train a TSM [39] model with a ResNet50 [28]
backbone for action recognition, utilizing all action clips and then dropping the
classification layer. This ResNet50 becomes the frozen image encoder in our pro-
posed architecture, replacing ViT. During the training and inference of Hand-
Former, this TSM backbone operates as a true image model (ResNet50), as we
employ it on individual frames without any channel shifting. The TSM features
provided in the Assembly101 [51] are generated in this way, and we utilize them
in our egocentric action recognition experiments (Sec. 5.5).

In Tab. 10, we present a comparison of the two backbone options for our frame
encoder – ResNet50 from TSM and ViT-g/14 from DINOv2. The ResNet50
outputs, enhanced through pretraining within TSM, incorporate domain-specific
features and temporal encoding via channel shifting during training. As a result,
the RGB-only variant achieves a 3% higher action accuracy compared to using
DINOv2 features alone. However, when introducing pose information, the image-
based features are complemented by motion features, reducing the impact of
motion understanding facilitated by the temporal shift mechanism of TSM in the
ResNet50 encoder. Therefore, integrating pose data diminishes the pretraining
advantage of ResNet50, resulting in a performance gap of less than 1%.

D Maintaining High Temporal Resolution at Low Cost

Our method is designed to perform action recognition efficiently in hand-object
interaction videos. Obtaining efficiency in such a setup is challenging as we
need to maintain a high temporal resolution to understand fine-grained hand
movements that constitute the action. Therefore, we propose HandFormer using
densely sampled pose frames and sparse RGB frames. In this section, we quan-
tify the efficiency of this method compared to an alternative video model. As
mentioned, understanding fine-grained hand motion demands a high temporal
resolution to differentiate verb classes. For instance, relying on sparsely sampled
frames may make actions like “screwing" and “unscrewing" indistinguishable.
However, adopting a high temporal resolution with video models operating on

Method Component GFLOPs Count Total
GFLOPs

TSM [39] - - - 669.79

HandFormer-B/21

Pose Estimator [26] 0.30 162

84.01
Frame Encoder 4.12 8

Trajectory Encoder 0.29 8
Multimodal Tokenizer 0.01 8
Temporal Transformer 0.05 1

Table 11: Comparison of FLOPs between Handformer and TSM [39] when
both maintain a high temporal resolution at 60 fps. The number of frames is determined
by the average action duration in Assembly101 [51], and we use eight non-overlapping
micro-actions in our model.



20 Md Salman Shamil et al.

RGB frames is challenging, primarily due to (i) the excessive computation asso-
ciated with performing spatiotemporal operations on numerous frames, and (ii)
the need to address redundancy in RGB frames to extract meaningful informa-
tion.

In Tab. 11, we compare the FLOPs of our model vs. an efficient video model,
TSM [39] with a ResNet50 backbone when both maintain a high temporal reso-
lution. The results reveal that our model operates at about 8× fewer FLOPs. As
TSM has a 2D backbone and no 3D convolutions, it is expected to represent the
lower bound for the computational cost of a video model at that temporal res-
olution. For our frame encoder, we opt for the efficient alternative as described
in Sec. C. The average duration of fine-grained actions in Assembly101 [51] is 1.7
seconds. Following [51], we include an additional 0.5 seconds of context on either
side, resulting in an average of 2.7 × 60 = 162 frames per action clip. We use
K = 8 non-overlapping micro-actions, thus sampling 8 RGB frames and using
the trajectory encoder eight times.

E Additional Details for Multimodal Training

Our training recipe for the multimodal HandFormer involves initializing the
trajectory encoder with pretrained weights and utilizing hand-object ROI crop
within the frame encoder — ensuring better use of pose and RGB, respectively.

E.1 Pretraining Trajectory Encoder

Encoding micro-action involves extracting RGB and pose features using frame
encoder F and trajectory encoder T , respectively. While the frame encoder stays
frozen and provides the appearance features, the trajectory encoder is learned
and is expected to capture the hand motion. To effectively guide the trajectory
encoder in achieving the desired encoding, we pretrain it for verb recognition
solely using pose input. This approach leverages the inherent ability of pose data
to capture hand motion, a key determinant of the verb while remaining agnostic
to explicit information about interacting objects. This pretraining scheme leads
to a better initialization of the trajectory encoder in multimodal HandFormer

Frame Encoder Trajectory Encoder Accuracy(%)
Pretraining Action Verb Object

ViT-g/14 ✗ 39.79 67.40 50.69
✓ 41.06 69.23 51.17

ResNet50 ✗ 40.47 66.00 51.10
✓ 41.99 69.28 51.96

Table 12: Initializing the trajectory encoder T with pretrained weights im-
proves the overall performance with better verb recognition capability. Results are on
Assembly101 [51] dataset. The initial weights for T are obtained by training the model
to predict the verb classes from pose-only input.
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for action recognition. In Tab. 12, we observe that initializing the trajectory en-
coder with pretrained weights leads to improved action recognition performance,
particularly enhancing the recognition of verb classes.

E.2 Hand-Object Interaction Crop

In hand-object interaction (HOI) videos, the region of interest typically centers
around the hands, capturing crucial information about the interacting object and
the type of interaction. Leveraging 3D hand poses obtained through a readily
available pose estimator [26], we project these poses onto RGB frames, extract
the enclosing rectangle of the projected 2D pose, and expand it by 25% to define
the ROI crop. However, relying solely on the cropped region can occasionally
mislead the model for three potential reasons: i) failure of the pose estimator on
certain frames, leading to the absence of useful features from the RGB frames,
ii) the full object might not be visible when the crop is taken based on hand
poses only, and iii) hand crops have limitations in capturing global changes
compared to the full frames. Hence, to capitalize on both the localized interaction
information of hand crops and the global contextual information provided by
full frames, our model combines them both. If a valid hand crop is found, we
take the full and cropped RGB frames, pass them through the frame encoder,
average their features, and re-normalize them to unit norm. This full vs. HOI
crop ablation is shown in Tab. 13, in which combining both perform better than
the alternatives.

Full Frame HOI Crop Accuracy(%)
Action Verb Object

✓ ✗ 38.73 68.31 48.77
✗ ✓ 38.44 68.95 48.20
✓ ✓ 41.06 69.23 51.17

Table 13: Ablation study comparing full vs. HOI cropped RGB frames on
Assembly101 [51]. Incorporating both full and cropped RGB frames allows for lever-
aging localized interaction details from hand crops and global contextual information
from full frames, resulting in improved accuracy. HandFormer-B/21 is used with eight
non-overlapping micro-actions.

F Efficiency Comparison with Shift-GCN

While MS-G3D [43] and ISTA-Net [66] show state-of-the-art performance for
action recognition with hand poses, they are not efficiency-focused. Our Hand-
Former outperforms them with significantly fewer FLOPs. However, HandFormer-
B/6 prioritizes efficiency while slightly trading off accuracy. Therefore, we imple-
ment and test an efficiency-focused baseline, ShiftGCN [11], for verb recognition
on Assembly101 [51] and compare it to HandFormer-B/6 in Tab. 14. While Shift-
GCN relies on graph shift operations and pointwise convolutions for efficiency,
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Method GFLOPs Verb Accuracy (%)

Shift-GCN [11] 2.11 63.14
HandFormer-B/6 1.33 63.70

Table 14: Comparison of HandFormer-B/6 with Shift-GCN, an efficiency-
focused baseline for skeleton-based action recognition. Experiments are done for verb
recognition on Assembly101 [51].

our model identifies the crucial joints, i.e. fingertips and wrist joint, and pro-
cesses only these joints to reduce FLOPs substantially. As evident from Tab. 14,
our model outperforms Shift-GCN while incurring lower FLOPs.
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pick up

put down

inspect

rotate

unscrew

position

screw

remove

position screw on

remove screw from

pass

tilt up

attempt to position

push

tilt down

pull

attempt to remove

attempt to pick up

clap

attempt to unscrew

attempt to put down

spin

attempt to screw

shake
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Fig. 9: Confusion matrix for pose-only verb recognition with HandFormer-L/21.
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G Qualitative Analysis

In this section, we analyze the class-wise verb accuracy using the pose-only
HandFormer, aiming to identify the model’s limitations. Furthermore, we exam-
ine the multimodal aspect of action recognition and its role in alleviating object
misclassification.

G.1 Pose-only Performance

Fig. 9 displays the confusion matrix for verb classes using HandFormer-L/21 on
the test set. Notably, inspect, rotate, position, and remove verbs present recog-
nition challenges despite ample dataset samples. One potential explanation for
this phenomenon is the shared presence of certain signature movements among
these classes, which also occur in two head classes, namely, pick up and put
down. Another interesting observation in the results is the frequent classification
of ‘attempt to x’ classes as ‘x’. This is expected, as determining the successful
completion of a task adds another layer of complexity to these classes, espe-
cially when relying solely on pose information without considering changes in
the appearance of the interacting object throughout the clip.

G.2 Multimodal Fusion

To gain insights into how appearance information from RGB complements pose-
based models in hand-object interaction scenarios, we analyze samples involving
put down actions. In Tab. 15, we showcase the action classes predicted for these
samples using our pose-only model, referred to as Pose + 0 RGB. In these
samples, the model successfully detected the verb but struggled with object
classification. This challenge arises due to similarities in articulations observed
during tasks such as grasping a screwdriver and a screw or differentiating be-
tween a partially assembled toy and a completed one. These similarities lead to

Pose + 0 RGB Put down Put down Put down
screwdriver screw partial toy

RGB Sample

Pose + 1 RGB Put down Put down Put down
screw screwdriver finished toy

Table 15: Action predictions by our model with and without sampling an RGB frame.
Incorrect predictions are highlighted in red, while correct predictions are marked in
green.
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misclassifications by the pose-only model. However, introducing a single RGB
frame, denoted as Pose + 1 RGB, enhances the model’s ability to correctly iden-
tify the relevant object by providing visual context. This observation highlights
the limitations of recognizing actions, i.e. verb+object, solely from hand poses,
emphasizing the importance of incorporating visual cues.
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